The equation of the perpendicular line drawn by Leo is
. Option C is the correct answer.
<h3>How to determine the equation of a line?</h3>
A line is drawn perpendicular to the line shown in the image. The perpendicular line passes through the coordinate point (F,G).
The slope of the line from the graph is-

Therefore, the slope of the perpendicular line is
.
Also, it is being given that Leo's line is passing through the coordinate point .
So, the equation of the Leo's line is-

Thus, the equation of the perpendicular line drawn by Leo is .

Learn more about the equation of line here- brainly.com/question/20632687
#SPJ1
Answer:
y-3=3(x-2)
Step-by-step explanation:
y-y1=m(x-x1)
m=3
y-3=3(x-2)
Answer:

Step-by-step explanation:
The slope of a graph is also known as its gradient, which is the steepness of the graph.
If we are given two points on the line, we can find the slope by taking rise/ run, which is the ratio of the change in y-coordinate against the change in the x-coordinate. This can also be written as a formula:

☆ (x₁, y₁) is the first coordinate and (x₂, y₂) is the second coordinate
In this question, we are given the equation of the line. This equation is already in the slope-intercept form (y= mx +c) since the coefficient of y is 1 and all the other terms are on the other side of the equal sign. In the slope-intercept form, m is the slope while c is the y-intercept.
m= ⅘ since the coefficient of x is ⅘ in the given equation (when the equation is in the slope-intercept form).
The exact answer is 12 root 2, but you can also say approximately 17.
I got this by finding the square root of 369, and then 81. After finding these values, you get the equation...
a^2 + 9^2 = 369
a^2 + 81 = 369
a^2 = 288
And then I just found the square root of 288