Answer:
$370
Step-by-step explanation:
You already have 90 dollars so we can put that to the side for right now
If you're charged $35 at an hourly rate for 8 hours then you have to multiply the two together
30 x 8 = 240
5 x 8=40
240 + 40=280
Now is when your $90 dollars comes in. Now just add the two together and you'll end up with your final answer
280+90=370
Answer:
The reactant that acts as an acid, by contributing an H⁺ ion to create H3O+ in the chemical equation is C₆H₅OH.
Step-by-step explanation:
According to Brønstend-Lowry, an acid is a substance that transfer a proton (hydrogen cation, H⁺) to a base, forming a base conjugate for the first and an acid conjugate for the second.
From the following reaction:
C₆H₅OH(aq) + H₂O(l) → C₆H₅O⁻(aq) + H₃O⁺(aq)
We have that the C₆H₅OH transfer a proton to the water to form its conjugate base C₆H₅O⁻ and the conjugate acid of water H₃O⁺. Hence, the C₆H₅OH is the acid and the water is the base.
Therefore, the reactant that acts as an acid, by contributing an H⁺ ion to create H3O+ in the chemical equation is C₆H₅OH.
I hope it helps you!
To get the answer we can use proportion
86 --------------45%
x ---------------- 100%
Now cross multiply
x*45%=86*100
45x=8600 /:45 (divide both sides by 45)
x=191.11 - its the answer
Answer:
4.46% probability that the pressure will exceed this value.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Gaussian distribution with a mean value of 69 psi and a standard deviation of 10 psi.
Gaussian distribution = normal.
This means that 
If it is important that the pressure stays below 86 psi, what is the probability (in percent) that the pressure will exceed this value?
As a proportion, this probability is 1 subtracted by the pvalue of Z when X = 86. So



has a pvalue of 0.9554
1 - 0.9554 = 0.0446
0.0446*100 = 4.46%
4.46% probability that the pressure will exceed this value.
I believe the answer is cos^2 theta. Sec^2 theta on the right side of the equation is the inverse of Cos^2 theta, so multiplying the two together will get you 1. Cos^2 theta * Tan^2 theta = Sin^2 theta, and Cos^2 theta * 1 = Cos^2 theta. This all leads to the third and last step in the picture above.