Answer:
Step-by-step explanation:
Here you go mate
Use PEMDAS
Parenthesis,Exponent,Multiplication,Division,Addition,Subtraction
Step 1
4n-9=2(5+2n) Equation/Question
Step 2
4n-9=2(5+2n) Remove parenthesis
4n-9=4n+10
Step 3
4n-9=4n+10 Subtract 4n to sides
-9=10
Step 4
-9=10 Add 9
0=19
Answer
No solutions
Hope this helps
I think you do 120 divided by 5, but I could be wrong.
It's difficult to make out what the force and displacement vectors are supposed to be, so I'll generalize.
Let <em>θ</em> be the angle between the force vector <em>F</em> and the displacement vector <em>r</em>. The work <em>W</em> done by <em>F</em> in the direction of <em>r</em> is
<em>W</em> = <em>F</em> • <em>r</em> cos(<em>θ</em>)
The cosine of the angle between the vectors can be obtained from the dot product identity,
<em>a</em> • <em>b</em> = ||<em>a</em>|| ||<em>b</em>|| cos(<em>θ</em>) ==> cos(<em>θ</em>) = (<em>a</em> • <em>b</em>) / (||<em>a</em>|| ||<em>b</em>||)
so that
<em>W</em> = (<em>F</em> • <em>r</em>)² / (||<em>F</em>|| ||<em>r</em>||)
For instance, if <em>F</em> = 3<em>i</em> + <em>j</em> + <em>k</em> and <em>r</em> = 7<em>i</em> - 7<em>j</em> - <em>k</em> (which is my closest guess to the given vectors' components), then the work done by <em>F</em> along <em>r</em> is
<em>W</em> = ((3<em>i</em> + <em>j</em> + <em>k</em>) • (7<em>i</em> - 7<em>j</em> - <em>k</em>))² / (√(3² + 1² + 1²) √(7² + (-7)² + (-1)²))
==> <em>W</em> ≈ 5.12 J
(assuming <em>F</em> and <em>r</em> are measured in Newtons (N) and meters (m), respectively).
Answer:
C=14pi cm
A=49pi cm^2
Step-by-step explanation:
1) Circumference of a circle is 2piR and R=7cm
C=2pi(7)
C=14pi cm
2) Area of a circle is piR^2 and R=7cm
A=pi (7)^2
A=49pi cm^2
Applying the division rule of exponents, 6^10/6^6 can be rewritten in the form of b^n as: 6^10/6^6 = 6^4.
<h3>What is the Division Rule of Exponents?</h3>
The division rule of exponents state that if we have a numerator and a denominator with the same base, the quotient will be the base, while we subtract the exponent value of the denominator from the exponent value of the numerator.
For example, if we have, a³/a², the division rule of exponents states that:
a^(3 - 2) = a^1 = a.
Given the expression, 6^10/6^6, we can rewrite the expression in the form of b^n by applying the division rule of exponents as shown below:
6^10/6^6 = 6^(10 - 6)
6^10/6^6 = 6^4
In conclusion, applying the division rule of exponents, 6^10/6^6 can be rewritten in the form of b^n as: 6^10/6^6 = 6^4.
Learn more about the division rule of exponents on:
brainly.com/question/2263967
#SPJ1