Steps:
216 mm3 is the volume.
Given the volume, you can take the cube root of the volume to find the side.
The cube root of 216 is 6.
Answer: 6
First, let me do the Mathematical part of that, and then I shall explain the theory behind it.
Mathematical part:
We are going to multiply 513 with 46. So the two partial products that we are going to choose are 40 and 6.
Multiply 513 with 6 first.
513
x46
--------------------------
18 (as 6*3 = 18)
60 (as 6*10 = 60; In 513, the digit at tenths place is 1, so 1*10=10)
3000 (as 6*500 = 3000; In 513, 5 is at hundredth place, so 5*100=500)
120 (as 40*3 = 120; since 4 is at the tenth place, so 4*10=40)
400 (as 40*10 = 400)
20000 (as 40*500 = 20000)
--------------------------
23598 (Add all of them)
Theory:
As you can see above that we have chosen the two partial products individually which are 6 and 40. Since 4 in 46 is in tenth place, we have to consider it 40 (since 4*10 = 40). One by one, we first multiply 6 with 513. Then we move to the tenth place, and multiply 513 with 40. At the end, we have added all the results we found after multiplication.
Check: If we check the multiplication result by using the calculator, we would get the same result (23598).
Another Method (instant):
513 * (40+6) = (513*40) + (513*6) = 23598.
Answer:
1/35 sq. ft.
Step-by-step explanation:
Area = 3/35 x 1/3
= 1/35 sq. ft.
Hope it helps.
;)
Answer:
112 calories per cup
Step-by-step explanation:
Let x = unit rate for calories per cup,
Then (3/4)*x = 84
and x = 84*(4/3) = 112 calories per cup
Perhaps the most concise way to factor is by "completing the square" which is how the quadratic formula is derived...
x^2+6x+8=0 move constant to other side, subtract 8 from both sides
x^2+6x=-8, halve the linear coefficient, square it, then add that to both sides, in this case (6/2)^2=3^2=9
x^2+6x+9=1 now the left side is a perfect square of the form
(x+3)^2=1 take the square root of both sides
x+3=±√1 subtract 3 from both sides
x=-3±√1
x=-3±1
x=-4 and -2
Since the zeros occur when x=-4 and -2 the factors of the equation are:
(x+2)(x+4)