Explanation:
The partial pressure of an individual gas is equal to the total pressure of the mixture multiplied by the mole fraction of the gas.
Total pressure = 2atm
Mole Fraction = number of moles / total number of moles
Neon
Mole Fraction = 4.46 / 7.35 = 0.607
Partial Pressure = 0.607 * 2 = 1.214 atm
Argon
Mole Fraction = 0.74 / 7.35 = 0.101
Partial Pressure = 0.101 * 2 = 0.202 atm
Xenon
Mole Fraction = 2.15 / 7.35 = 0.293
Partial Pressure = 0.293 * 2 = 0.586 atm
Answer:
The atomic number of Selenium is 34. This means that Selenium possesses 34 electrons.
The atomic number of Aluminium is 13. This means that Aluminium has 13 electrons.
Hence, there is a difference of 21 between the number of electrons in an atom of selenium and the number of electrons in an atom of aluminium.
Selenium has 6 electrons in it's outer most shell whereas aluminium has 3 electrons in its outer most shell. As a result, aluminium will have a greater tendency to lose one of its outer most electrons to become stable.
Answer:
hope this helped
Explanation:
Radiant energy is created through electromagnetic waves and was discovered in 1885 by Sir William Crookes. Fields in which this terminology is most often used are telecommunications, heating, radiometry, lighting, and in terms of energy created from the sun.
The answer for the following mention bellow.
- <u><em>Therefore the final temperature of the gas is 260 k</em></u>
Explanation:
Given:
Initial pressure (
) = 150.0 kPa
Final pressure (
) = 210.0 kPa
Initial volume (
) = 1.75 L
Final volume (
) = 1.30 L
Initial temperature (
) = -23°C = 250 k
To find:
Final temperature (
)
We know;
According to the ideal gas equation;
P × V = n × R ×T
where;
P represents the pressure of the gas
V represents the volume of the gas
n represents the no of moles of the gas
R represents the universal gas constant
T represents the temperature of the gas
We know;
= constant
×
= 
Where;
(
) represents the initial pressure of the gas
(
) represents the final pressure of the gas
(
) represents the initial volume of the gas
(
) represents the final volume of the gas
(
) represents the initial temperature of the gas
(
) represents the final temperature of the gas
So;
= 
(
) =260 k
<u><em>Therefore the final temperature of the gas is 260 k</em></u>
<u><em></em></u>
Answer:
Potential energy is energy due to an object's height above the ground.
Potential energy = mass x gravity x height
Kinetic energy is energy due to the motion of the object.
Kinetic energy = 1/2 x mass x velocity²