<u>Answer:</u> The true statement is iron can reduce
to gold metal
<u>Explanation:</u>
Single displacement reaction is defined as the reaction in which more reactive element displaces a less reactive element from its chemical reaction.
The reactivity of metal is determined by a series known as reactivity series. The metals lying above in the series are more reactive than the metals which lie below in the series.

Metal A is more reactive than metal B.
We are given:
Iron can reduce copper, silver can reduce gold, sodium can reduce iron and copper can reduce silver metal.
The increasing order of reactivity thus follows:

where, sodium is most reactive and gold is least reactive
For the given options:
<u>Option 1:</u> Copper cannot easily reduce sodium ion to sodium metal because it is less reactive.

<u>Option 2:</u> Iron cant easily reduce gold ion to gold metal because it is more reactive.

<u>Option 3:</u> Silver cannot easily reduce iron ion to iron metal because it is less reactive.

Hence, the true statement is iron can reduce
to gold metal
Group 7A are halogens
If you look at a periodic table, these elements include F, Cl, Br, I, and At. Some well known salts are KCl and NaCl (better known as table salt!)
It can grow, reproduce, and produce/use energy. Hope this helps!!!
Answer:
<h3>1. 10 e⁻</h3>
Oxidation numbers
I₂O₅(s): I (5+); O(2-)
CO(g): C(2+); O(2-)
I₂(s): I(0)
CO₂(g): C(4+); O(2-)
<h3>2. 4 e⁻</h3>
Oxidation numbers
Hg²⁺(aq): Hg(2+)
N₂H₄(aq): N(2-); H(1+)
Hg(l): Hg(0)
N₂(g): N(0)
H⁺(aq): H(1+)
<h3>3. 6 e⁻</h3>
Oxidation numbers
H₂S(aq): H(1+); S(2-)
H⁺(aq): H(1+)
NO₃⁻(aq): N(5+); O(2-)
S(s): S(0)
NO(g): N(2+); O(2-)
H₂O(l): H(1+); O(2-)
Explanation:
In order to state the total number of electrons transferred we have to identify both half-reactions for each redox reaction.
1. I₂O₅(s) + 5 CO(g) → I₂(s) + 5 CO₂(g)
Oxidation: 10 e⁻ + 10 H⁺(aq) + I₂O₅(s) → I₂(s) + 5 H₂O(l)
Reduction: 5 H₂O(l) + 5 CO(g) → 5 CO₂(g) + 10 H⁺(aq) + 10 e⁻
2. 2 Hg²⁺(aq) + N₂H₄(aq) → 2 Hg(l) + N₂(g) + 4 H⁺(aq)
Oxidation: N₂H₄(aq) → N₂(g) + 4 H⁺(aq) + 4 e⁻
Reduction: 2 Hg²⁺(aq) + 4 e⁻ → 2 Hg(l)
3. 3 H₂S(aq) + 2H⁺(aq) + 2 NO₃⁻(aq) → 3 S(s) + 2 NO(g) + 4H₂O(l)
Oxidation: 3 H₂S(aq) → 3 S(s) + 6 H⁺(aq) + 6 e⁻
Reduction: 8 H⁺(aq) + 2 NO₃⁻(aq) + 6 e⁻ → 2 NO(g) + 4 H₂O