1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren2701 [21]
3 years ago
12

Which expression is represented by the phrase "the square of y decreased by the quotient of 28 and 7?

Mathematics
2 answers:
boyakko [2]3 years ago
6 0

Answer:

y^2-\frac{28}{7}.

Step-by-step explanation:

The given phrase is "the square of y decreased by the quotient of 28 and 7".

We need to find the mathematical expression for the given phrase.

Power 2 is used for square.

The sign "/" is used for division or quotient.

The sign "-" is used for subtraction or decrease.

Using these sign we get

Square of y = y^2

Quotient of 28 and 7 = \frac{28}{7}

The square of y decreased by the quotient of 28 and 7 = y^2-\frac{28}{7}

Therefore, the required expression is y^2-\frac{28}{7}.

agasfer [191]3 years ago
4 0

Answer:

y^{2}-4

Step-by-step explanation:

We are given the statement,

'The square of y decreased by the quotient of 28 and 7'.

i.e. Subtracting the quotient \frac{28}{7} = 4 from y^{2}.

i.e. y^{2}-4

Hence, the expression which represents the given statement is y^{2}-4.

You might be interested in
I need help with 3, 4, 5, and 6
Ostrovityanka [42]
3. The answer is 18 because 12➗4= 3 so 6*3=18
3 0
3 years ago
5) In the figure, triangle ABC is a right triangle at B. If CD = 15, find BC to the nearest tenth.
ycow [4]

Answer:

BC ≈ 4.0

Step-by-step explanation:

∠ DCA = 180° - 70° = 110° ( adjacent angles )

∠ DAC = 180° - (30 + 110)° ← sum of angles in triangle

∠ DAC = 180° - 140° = 40°

Using the Sine rule in Δ ACD to find common side AC

\frac{AC}{sin30} = \frac{15}{sin40} ( cross- multiply )

AC × sin40° = 15 × sin30° ( divide both sides by sin40° )

AC = \frac{15sin30}{sin40} ≈ 11.668

Using the cosine ratio in right triangle ABC

cos70° = \frac{adjacent}{hypotenuse} = \frac{BC}{AC} = \frac{BC}{11.668} ( multiply both sides by 11.668 )

11.668 × cos70° = BC , then

BC ≈ 4.0 ( to the nearest tenth )

6 0
3 years ago
100% pure gold is 24 karat gold, which is too soft to be made into jewelry most call Jory is 14 karat gold proximally 58% gold 1
denis-greek [22]

Answer:

The amount of gold used in a 200 g 14 gold bracelet is 116 g.

Step-by-step explanation:

Since a 14 karat jewell is stated to have aproximally 58 % of it's weigh in gold we need to take the total weigh of the jewel in question and find that percentage of it's weigh. In order to find that percentage we'll first convert that number into a decimal, we do that by dividing it by 100, so we have 58% = 58/100 = 0.58 we can multiply this value by the weigh of the jewel to find the amount of gold used. So we have:

gold used = total weigh*0.58 = 200*0.58 = 116 g

5 0
3 years ago
Brainiest to whoever right
Anna35 [415]

Answer:

since M lies between point A and B , we came to know that,

M(4,6) =(x,y)

A(-2,-1)=(x1 ,y1)

B( _, _ )=(x2,y2)

Now using mid point formula,

x=x1×x2÷2 y=y1+y2÷2

so, point B is (10,13)

6 0
2 years ago
A tank initially contains 60 gallons of brine, with 30 pounds of salt in solution. Pure water runs into the tank at 3 gallons pe
adoni [48]

Answer:

the amount of time until 23 pounds of salt remain in the tank is 0.088 minutes.

Step-by-step explanation:

The variation of the concentration of salt can be expressed as:

\frac{dC}{dt}=Ci*Qi-Co*Qo

being

C1: the concentration of salt in the inflow

Qi: the flow entering the tank

C2: the concentration leaving the tank (the same concentration that is in every part of the tank at that moment)

Qo: the flow going out of the tank.

With no salt in the inflow (C1=0), the equation can be reduced to

\frac{dC}{dt}=-Co*Qo

Rearranging the equation, it becomes

\frac{dC}{C}=-Qo*dt

Integrating both sides

\int\frac{dC}{C}=\int-Qo*dt\\ln(\abs{C})+x1=-Qo*t+x2\\ln(\abs{C})=-Qo*t+x\\C=exp^{-Qo*t+x}

It is known that the concentration at t=0 is 30 pounds in 60 gallons, so C(0) is 0.5 pounds/gallon.

C(0)=exp^{-Qo*0+x}=0.5\\exp^{x} =0.5\\x=ln(0.5)=-0.693\\

The final equation for the concentration of salt at any given time is

C=exp^{-3*t-0.693}

To answer how long it will be until there are 23 pounds of salt in the tank, we can use the last equation:

C=exp^{-3*t-0.693}\\(23/60)=exp^{-3*t-0.693}\\ln(23/60)=-3*t-0.693\\t=-\frac{ln(23/60)+0.693}{3}=-\frac{-0.959+0.693}{3}=  -\frac{-0.266}{3}=0.088

5 0
3 years ago
Other questions:
  • An office building rents for $40,000 the first year, then increases by 0.5% each year. Use summation notation to represent the t
    9·2 answers
  • Organize the following expressions from greatest to least by number of terms: (2 points) I. 6x2 II. 18x2 + 5ab − 6y III. 8a − 5
    13·1 answer
  • To win a game, Francine needs to move more than 10 spaces
    9·1 answer
  • How many different isosceles right triangles can be formed from three dots in the grid below? Two examples are shown.
    9·1 answer
  • Hi kids how are ya ......................................
    6·1 answer
  • PLS HELP ASAP:Find all the missing elements:
    5·1 answer
  • WILL GIVE BRAINLET !!<br><br> 2/6 + - 5/12 ( show how u get the answer )
    14·2 answers
  • Hat is the product of 4.01 × 10-5 and 2.56 ×108?
    12·2 answers
  • For a craft project, two equilateral triangles are taped together to create a quadrilateral
    6·1 answer
  • What are two ways that the solution of a quadratic equation can be found using a graphing calculator?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!