1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
devlian [24]
3 years ago
15

Write this number in scientific notation 38200000 Look at attachment down below

Mathematics
2 answers:
weqwewe [10]3 years ago
7 0

Answer:

3.82 × 107

Step-by-step explanation:

Move the decimal point in your number until there is only one non-zero digit to the left of the decimal point. The resulting decimal number is a.

Count how many places you moved the decimal point. This number is b.

If you moved the decimal to the left b is positive.

If you moved the decimal to the right b is negative.

If you did not need to move the decimal b = 0.

Write your scientific notation number as a x 10^b and read it as "a times 10 to the power of b."

Remove trailing 0's only if they were originally to the left of the decimal point.

crimeas [40]3 years ago
4 0

Answer:3.82 x 107

Step-by-step explanation:

You might be interested in
Rewrite 10x - 5y = -30 in slope-intercept form.<br> somebody help me wit dis
Anna [14]

Answer:

y = 2x + 6

Step-by-step explanation:

10x - 5y = -30

-5y = -10x - 30

y = 2x + 6

6 0
2 years ago
What is 6.04 in simplest form
Reptile [31]
6 1/25 is the answer
6 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Question is in the picture. Please help
loris [4]

One pair of adjacent sides are congruent (WZ and ZY) so as WXYZ is a parallelogram all sides are congruent.

7 0
3 years ago
0.18 ( ) 0.26 which is greater
Naddika [18.5K]

Answer: 0.26

Step-by-step explanation: 0.26 because it has a greater value, nothing much to solve unless im missing something.

if I am missing something please comment on my answer so I can help you further with your question.

3 0
2 years ago
Read 2 more answers
Other questions:
  • What is the angle of rotation for a regular 15-sided polygon?
    6·1 answer
  • PLEASE HELP ASAPPPP!!!!
    14·1 answer
  • Solve 5x - c = k for x<br><br> Answers above
    15·2 answers
  • A $20.00 pair of jeans is discounted 20%. What is the final price of the jeans?
    6·1 answer
  • What is the value of x?<br>A. 20<br>B. 24<br>C. 25<br>D. 30<br>E. 40​
    12·1 answer
  • Y’all please help on these 2 questions !! asap
    8·1 answer
  • A pillow that usually costs $18 is marked down 25%. Use the table to find the pillow’s new price
    8·1 answer
  • 2 - 4 • -5 help me.
    15·1 answer
  • Please help meeeeeeee
    13·2 answers
  • What number is 66 2/3% of 495? <br><br> Show work
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!