1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexus [3.1K]
4 years ago
12

What is the expression for the below sequence (use n) -3,-6,-9,-12

Mathematics
1 answer:
polet [3.4K]4 years ago
6 0

Answer:

a_{n} = - 3n

Step-by-step explanation:

There is a common difference between consecutive terms, that is

- 6 - (- 3) = - 9 - (- 6) = - 12 - (- 9) = - 3

This indicate the sequence is arithmetic with n th term

a_{n} = a₁ + (n - 1)d

where a₁ is the first term and d the common difference

Here a₁ = - 3 and d = - 3 , thus

a_{n} = - 3 - 3(n - 1) = - 3 - 3n + 3 = - 3n

The n th term is - 3n

You might be interested in
Solve for w and y <br><br>w= <br><br>y=​
Contact [7]

Answer:

w=√200 (or 14.14)

y=20

yea pretty simple its just the Pythagorean theorem and the fact that a triangle with equal base angles is isosceles triangle

8 0
2 years ago
In 10 minutes, a heart can beat 700 times. At this rate in how many minutes will a heart beat in 140 times. At what rate can a h
ArbitrLikvidat [17]
I think 2.3 minutes
5 0
3 years ago
Find the value of the expression:<br>70–a2 for a=–25; 1; 10
shutvik [7]

Simple answer.

You will have to replace a, with the given numbers.

For the 1st one)

70-25² since a=25. 70-625=-55

2nd)

70-1²=70-1=69

3d)

70-10²=70-100=-30

Hope this helped.

8 0
3 years ago
Find the digits in space given with the following numbers so that the number is divisible by 11.
Lina20 [59]

Answer:

A

Step-by-step explanation:

I am not sure but I think A

6 0
3 years ago
Read 2 more answers
7(x + y) ex2 − y2 dA, R where R is the rectangle enclosed by the lines x − y = 0, x − y = 7, x + y = 0, and x + y = 6
Anastasy [175]

Answer:

\int\limits {\int\limits_R {7(x + y)e^{x^2 - y^2}} \, dA = \frac{1}{2}e^{42}  -\frac{43}{2}

Step-by-step explanation:

Given

x - y = 0

x - y = 7

x + y = 0

x + y = 6

Required

Evaluate \int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA

Let:

u=x+y

v =x - y

Add both equations

2x = u + v

x = \frac{u+v}{2}

Subtract both equations

2y = u-v

y = \frac{u-v}{2}

So:

x = \frac{u+v}{2}

y = \frac{u-v}{2}

R is defined by the following boundaries:

0 \le u \le 6  ,  0 \le v \le 7

u=x+y

\frac{du}{dx} = 1

\frac{du}{dy} = 1

v =x - y

\frac{dv}{dx} = 1

\frac{dv}{dy} = -1

So, we can not set up Jacobian

j(x,y) =\left[\begin{array}{cc}{\frac{du}{dx}}&{\frac{du}{dy}}\\{\frac{dv}{dx}}&{\frac{dv}{dy}}\end{array}\right]

This gives:

j(x,y) =\left[\begin{array}{cc}{1&1\\1&-1\end{array}\right]

Calculate the determinant

det\ j = 1 * -1 - 1 * -1

det\ j = -1-1

det\ j = -2

Now the integral can be evaluated:

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA becomes:

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{x^2 - y^2}} \, *\frac{1}{|det\ j|} * dv\ du

x^2 - y^2 = (x + y)(x-y)

x^2 - y^2 = uv

So:

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{uv}} *\frac{1}{|det\ j|}\, dv\ du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{uv}} *|\frac{1}{-2}|\, dv\ du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{uv}} *\frac{1}{2}\, dv\ du

Remove constants

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0 {\int\limits^7_0 {ue^{uv}} \, dv\ du

Integrate v

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0  \frac{1}{u} * {ue^{uv}} |\limits^7_0  du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0  e^{uv} |\limits^7_0  du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0  [e^{u*7} -   e^{u*0}]du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0  [e^{7u} -   1]du

Integrate u

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{7u} -   u]|\limits^6_0

Expand

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * ([\frac{1}{7}e^{7*6}  - 6) -(\frac{1}{7}e^{7*0} -  0)]

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * ([\frac{1}{7}e^{7*6}  - 6) -\frac{1}{7}]

Open bracket

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{7*6}  - 6 -\frac{1}{7}]

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{7*6}  -\frac{43}{7}]

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{42}  -\frac{43}{7}]

Expand

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{1}{2}e^{42}  -\frac{43}{2}

3 0
3 years ago
Other questions:
  • Regular pentagonal prism has 9 cm base edges. A larger similar prism of the same material has 36 cm base edges. How does the vol
    6·1 answer
  • .38×3÷(-0.05)×5÷(-8)
    15·1 answer
  • HELP PLEASE!!! I don’t understand these math questions at all and it’s due in 2 hours, I’m freaking out
    8·1 answer
  • Can someone help me
    14·1 answer
  • What is the change in elevation between 8500 and -300
    13·1 answer
  • Andrea ordered a computer on the internet The computer cost $1500, and the tax was
    6·2 answers
  • WCLN PCMath1l - Rev. Sept/2018
    15·1 answer
  • A train leaves L.A. at 2pm and heads north at 50mph. If the next train leaves the station 3 hours later and heads north at 60 mp
    6·1 answer
  • The Table Shows The Number Of Rows Of Bricks A Worker Can Lay In Different Numbers Of Hours
    7·1 answer
  • Evaluate the expression 4 × (3 + 52) ÷ 2. Show your work.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!