Find the volume of the solid formed by rotating the region inside the first quadrant enclosed by y=x^3 and y=9x about the x-axis
.
...?
1 answer:
First solve x³=9x

We can ignore x = -3 because it is not in the first quadrant.
<span>So our integral is going to go from x=0 to x=3.
</span>
<span>Now we can use the formula
</span><span>

</span>
![\int\limits_{0}^{3}(\pi (9x)^2-\pi(x^3)^2)dx \\\int\limits_{0}^{3}(\pi (9x)^2-\pi(x^3)^2)dx \\\pi\int\limits_{0}^{3}(81x^2-x^6)dx \\2\times \int\limits_{0}^{3}[\pi(9x)^2-\pi(x^3)^2]dx \\\pi\left[81\frac{x^3}{3}-\frac{x^7}{7}\right]_{0}^{3} \\ \\\frac{2916\pi}{7}](https://tex.z-dn.net/?f=%5Cint%5Climits_%7B0%7D%5E%7B3%7D%28%5Cpi%20%289x%29%5E2-%5Cpi%28x%5E3%29%5E2%29dx%0A%5C%5C%5Cint%5Climits_%7B0%7D%5E%7B3%7D%28%5Cpi%20%289x%29%5E2-%5Cpi%28x%5E3%29%5E2%29dx%0A%5C%5C%5Cpi%5Cint%5Climits_%7B0%7D%5E%7B3%7D%2881x%5E2-x%5E6%29dx%0A%5C%5C2%5Ctimes%20%5Cint%5Climits_%7B0%7D%5E%7B3%7D%5B%5Cpi%289x%29%5E2-%5Cpi%28x%5E3%29%5E2%5Ddx%0A%5C%5C%5Cpi%5Cleft%5B81%5Cfrac%7Bx%5E3%7D%7B3%7D-%5Cfrac%7Bx%5E7%7D%7B7%7D%5Cright%5D_%7B0%7D%5E%7B3%7D%20%5C%5C%20%5C%5C%5Cfrac%7B2916%5Cpi%7D%7B7%7D)
<span>
</span>
You might be interested in
Answer:C
Step-by-step explanation:on edge
Answer:
Step-by-step explanation:
$2345.20
I have drop in a file for u to see it.
Answer:

<h3>
<u>PLEASE</u><u> MARK</u><u> ME</u><u> BRAINLIEST</u></h3>
I believe the answer is d