<h3>Given:</h3>
M₁ = 2.0 mol/L
V₁ = 1 L
M₂ = 0.1 mol/L
<h3>Required:</h3>
V₂
<h3>Solution:</h3>
M₁V₁ = M₂V₂
V₂ = M₁V₁ / M₂
V₂ = (2.0 mol/L)(1 L) / (0.1 L)
<u>V₂ = 20 L</u>
Therefore, the volume of the new solution will be 20 L.
#ILoveChemistry
#ILoveYouShaina
<u>We are given:</u>
The force applied on the poor hamster (F) = 12 N
Acceleration of the poor Hamster (a) = 8 m/s²
<u>Solving for the mass of the Poor Hamster:</u>
From newton's second equation of motion, we know that:
F = ma
<em>replacing the given values</em>
12 = 8 * m
m = 12/8 kg
m = 3/2 kg
The poor Hamster weighs 3/2 kg
Answer:
ΔG° of reaction = -47.3 x
J/mol
Explanation:
As we can see, we have been a particular reaction and Energy values as well.
ΔG° of reaction = -30.5 kJ/mol
Temperature = 37°C.
And we have to calculat the ΔG° of reaction in the biological cell which contains ATP, ADP and HPO4-2:
The first step is to calculate the equilibrium constant for the reaction:
Equilibrium Constant K = ![\frac{[HPO4-2] x [ADP]}{ATP}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHPO4-2%5D%20x%20%5BADP%5D%7D%7BATP%7D)
And we have values given for these quantities in the biological cell:
[HP04-2] = 2.1 x
M
[ATP] = 1.2 x
M
[ADP] = 8.4 x
M
Let's plug in these values in the above equation for equilibrium constant:
K = ![\frac{[2.1x10^{-3}] x [8.4x10^{-3}] }{[1.2 x 10^{-2}] }](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2.1x10%5E%7B-3%7D%5D%20x%20%5B8.4x10%5E%7B-3%7D%5D%20%7D%7B%5B1.2%20x%2010%5E%7B-2%7D%5D%20%7D)
K = 1.47 x
M
Now, we have to calculate the ΔG° of reaction for the biological cell:
But first we have to convert the temperature in Kelvin scale.
Temp = 37°C
Temp = 37 + 273
Temp = 310 K
ΔG° of reaction = (-30.5
) + (8.314)x (310K)xln(0.00147)
Where 8.314 = value of Gas Constant
ΔG° of reaction = (-30.5 x
) + (-16810.68)
ΔG° of reaction = -47.3 x
J/mol
I know for a fact that a good conductor transfer electricity well,.. so my guess would be that the answer is true.
Answer:
Option-B (k) is the correct answer.
Explanation:
As we know the rate of reaction is given as;
Rate = k [A]ˣ
Where;
Rate = Rate of Reaction
k = rate constant
[ ] = concentration of A
x = order of reaction
So, from this equation we found that rate of reaction depends upon concentration and rate constant (k).
Now,
The rate constant is as follow,,
k = Ae^(Ea/RT)
This equation is known as Arrhenius Equation, according to this equation rate constant depends upon Temperature and Activation energy. Greater the temperature greater is the rate constant and hence greater is the rate of reaction. Or smaller the activation energy greater is the rate constant and vice versa.