When radioactive decay occurs, the original nucleus splits into daughter nuclei and the resulting nucleus is more stable than the original nucleus. The nucleus can be of a different element than the original.
Unstable nuclei often undergo radioactive decay. In a radioactive decay, the unstable nucleus is broken up into other nuclei. Usually, the nuclei formed during radioactive decay are smaller in mass compared to the original nucleus.
Also, the resulting nucleus is more stable than the original nucleus. The nucleus can be of a different element than the original.
Answer:
- F
- E
- G
- A
- C
- B
- D
Explanation:
Those are the answers in order, BUT the Goldstein and Rutherford ones are confusing me because Rutherford discovered<em> protons</em> and the <em>nuclear atom</em>. Through my research I also noticed that Goldstein contributed to the discovery of the protons made Rutherford, so I listed him as the one who discovered the proton.
I hope this helps! Have a wonderful night! :D
Answer:
The correct answer is: 2M Al3+(aq) and 6 M NO3-(aq)
Explanation:
Step 1: Data given
2.0 M Al(NO3)3
Step 2:
Al(NO3)3 in water will dissociate as following:
Al(NO3)3 → Al^3+ + 3NO3^-
For 1 mol of Al(NO3)3 we will have 1 mol of Al^3+ and 3 moles of NO3^-
We know that the molarity of Al(NO3)3 = 2.0 M, this means 2.0 mol/ L
The mol ratio Al(NO3)3 and Al^3+ is 1:1 so the molarity of Al^3+ is<u> 2.0 M</u>
The mol ratio Al(NO3)3 and NO3^- is 1:3 so the molarity of NO3^- is<u> 6.0M</u>
The correct answer is: 2M Al3+(aq) and 6 M NO3-(aq)
Answer:
1) If the volume of a container is increased, the temperature increases.
2) If the volume of a container is decreased, the temperature decreases.
Explanation:
This means that the volume of a gas is directly proportional to its temperature.
Answer:its the thrid one i think
Explanation: