Answer:
Here's what I get
Explanation:
You have an equilibrium reaction between Fe³⁺/ SCN⁻ and FeSCN²⁺.

When you add AgNO₃, the Ag⁺ reacts with the SCN⁻. It forms a colourless precipitate of Ag(SCN).
Ag⁺(aq) + SCN⁻(aq) ⟶ AcSCN(s)
According to Le Châtelier's Principle, when we apply a stress to a system at equilibrium, the system will respond in a way that tends to relieve the stress.
If you add Ag⁺ to the equilibrium solution, it removes the SCN⁻ [as an Ag(SCN) precipitate].
The system responds by trying to replace the missing SCN⁻:
The Fe(SCN)²⁺ dissociates to form SCN⁻, so the position of equilibrium shifts to the left,
You now have more Fe³⁺ and SCN⁻ and less of the highly coloured Fe(SCN)²⁺ at the new equilibrium.
The deep red colour becomes less intense.
Answer:
no because the suns light is way more bright than lightbulbs.
Explanation:
Answer: d. the distance between two rarefactions,
Explanation:
Wavelength is the distance between two identical adjacent points in a wave. This means that it is the distance between two adjacent compressions or two adjacent rarefactions.
Wavelengths are inversely related to frequency because the longer the wavelength, the less the number of wave cycles per second.
Answer:
Rubidium
Rubidium is the first element placed in period 5.