12.2 C
It has 3 significant figures now.
Answer:
Reaction 5: Decomposition reaction.
Reaction 6: Single replacement reaction
Reaction 7: Combination reaction.
Reaction 8: Combustion reaction.
Explanation:
<u><em>Reaction 5:</em></u> 2KClO₃ → 2KCl + 3O₂.
- It is a decomposition reaction.
- A decomposition reaction is a type of chemical reaction in which a single compound breaks down into two or more elements or new compounds.
- In this reaction: potassium chlorate decomposes into two single components (potassium chloride and oxygen).
- So, it is a decomposition reaction.
<u><em>Reaction 6:</em></u> Zn + 2HCl → H₂ + ZnCl₂.
- It is a single replacement reaction.
- A single-replacement reaction, a single-displacement reaction, is a reaction by which one (or more) element(s) replaces an/other element(s) in a compound.
- It is most often occur if element is more reactive than the other, thus giving a more stable product.
- In this reaction, zinc metal (more active) displaces the hydrogen to form hydrogen gas and zinc chloride, a salt. Zinc reacts quickly with the acid to form bubbles of hydrogen.
<u><em>Reaction 7:</em></u> N₂O₅ + H₂O → 2HNO₃.
- It is a combination "synthesis" reaction.
- A synthesis reaction has two or more reactants and only one product.
- In this reaction, dinitrogen pentoxide reacts with water to produce nitric acid.
- So, it is considered as a synthetic "combination" reaction.
<u><em>Reaction 8:</em></u> 2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O.
- It is a combustion reaction.
- A combustion reaction is a reaction where hydrocarbon alkane is completely burned in oxygen to produce water and carbon dioxide.
- In this reaction 1.0 mole of ethane is burned to give 4.0 moles of carbon dioxide and 6.0 moles of water.
- So, it is considered as a combustion reaction.
and
.
Assuming complete decomposition of both samples,
First compound:
;
of the first compound would contain
Oxygen and mercury atoms seemingly exist in the first compound at a
ratio; thus the empirical formula for this compound would be
where the subscript "1" is omitted.
Similarly, for the second compound
;
of the first compound would contain
and therefore the empirical formula
.
M ( HCl ) = ?
V ( HCl ) = 25.5 mL in liters : 25.5 / 1000 => 0.0255 L
M ( NaOH ) = 0.113 M
V ( NaOH ) = 51.2 mL / 1000 => 0.0512 L
number of moles NaOH:
n = M x V
n = 0.113 x <span> 0.0512 => 0.0057856 moles of NaOH
mole ratio:
</span><span>HCl + NaOH = NaCl + H2O
</span><span>
1 mole HCl -------------- 1 mole NaOH
( moles HCl ) ----------- </span><span> 0.0057856 moles NaOH
</span>
(moles HCl ) = <span> 0.0057856 x 1 / 1
</span>
= <span> 0.0057856 moles of HCl
</span>
M ( HCl ) = n / V
M = 0.0057856 / <span>0.0255
</span>
= 0.227 M
Answer A
hope this helps!