Answer:
7. (4x +10)/(x^3 +3x^2 -16x -48)
9. -320/93
Step-by-step explanation:
7. As with adding any fractions, first you find a common denominator. When the fractions are rational expressions, it often helps to factor the denominators.
6/(x^2 -16) -2/(x^2 -x -12) = 6/((x -4)(x +4)) -2/((x -4)(x +3))
= (6(x +3) -2(x +4))/((x -4)(x +3)(x +4)) . . . . . using a common denominator
= (6x +18 -2x -8)/((x -4)(x +3)(x +4))
= (4x +10)/((x^2 -16)(x +3))
= (4x +10)/(x^3 +3x^2 -16x -48)
_____
9. First you simplify the denominator:
2/25 -5/16 = (2·16 -5·25)/(25·16) = -93/400
Then you perform the division. This can be done by multiplying by the inverse of the denominator.
(4/5)/(2/5 -5/16) = (4/5)·(-400/93) = -320/93
Answer:
C. 55°
Step-by-step explanation:
Note the total measurement of angles for a triangle. The total measurement of all angles in a triangle = 180°
Note that m∠C is a right angle (as shown through the square), and that right angles = 90°
Subtract to find the measurement of the unknown angle (∠B)
∠B = 180 - (∠A + ∠C)
∠B = 180 - (35 + 90)
Simplify. Combine like terms. First, add (solve parenthesis), then subtract.
∠B = 180 - (125)
∠B = 55
m∠B = C. 55°
~
The complex solution of a quadratic equation are (- 2 + i ) and
(- 2 - i ).
What is Quadratic equation?
An algebraic equation of the second degree is called a quadratic equation.
Given that;
A quadratic equation is;
3x² = -12x - 15
Now, The equation is written as;
3x² + 12x + 15 = 0
Take 3 common, we get;
3 (x² + 4x + 5) = 0
x² + 4x + 5 = 0
Factorize the equation by using Sridharacharya Formula;
x = - 4 ± √4² - 4*1*5 / 2*1
x = -4 ± √16 - 20 / 2
x = - 4 ± √-4 / 2
Since, √-1 = i
x = -4 ± 2i / 2
x = - 2 ± i
It gives two values of x as;
x = - 2 + i
And, x = - 2 - i
Hence, The complex solution of a quadratic equation are (- 2 + i ) and
(- 2 - i ).
Learn more about the quadratic equation visit:
brainly.com/question/24334139
#SPJ1
Answer:
I would say either the 2,3,4,or 5
Answer:
Final Value = 58.50 × (1 + 10/100)
Final Value = 58.50 × (1 + 0.1)
Final Value = 58.50 × (1.1)
Final Value = 64.35