In Y=-3x+5 the slope is: -3 and the Y intercept is 5. 
Explanation:
The equation without any actual inputs is: Y=mX+B. m refers to the slope. B is the Y intercept. So when looking at the equation with information inputted. You would follow the same structure. Slope will be with the X and Y intercept will be added after.
        
             
        
        
        
Answer:
The win percentage decreased by 10%
Step-by-step explanation:
First you need to fin the total games played right before Melissa got Injured
41+23=64
Then you need to find the win percentage by making a fraction of wins over total games
wins/total games = 41/64 = 64%
Then you need to find the number of games played after Melissa got injured
54-41 = 13 wins
34-23 = 11 losses
13+11 = 24 total games played without Melissa
You find that win percentage similarly to the first time
wins/total games = 13/24 = 54%
Then you find the difference in the percentages and there you have it!!
64% - 54% = 10%
It decreased as well therefore the answer is...
It decreased by 10%
 
        
             
        
        
        
Answer: its 62
Step-by-step explanation:
Isolate the radical, then raise each side of the equation to the power of its index.
 
        
             
        
        
        
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Terms/Coefficients
- Functions
- Function Notation
- Graphing
- Solving systems of equations
<u>Calculus</u>
Area - Integrals
Integration Rule [Reverse Power Rule]:                                                                 
Integration Rule [Fundamental Theorem of Calculus 1]:                                      
Integration Property [Addition/Subtraction]:                                                          ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
Area of a Region Formula:                                                                                     ![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Bf%28x%29%20-%20g%28x%29%5D%7D%20%5C%2C%20dx)
Step-by-step explanation:
*Note:
<em>Remember that for the Area of a Region, it is top function minus bottom function.</em>
<u />
<u>Step 1: Define</u>
f(x) = x²
g(x) = x⁶
Bounded (Partitioned) by x-axis
<u>Step 2: Identify Bounds of Integration</u>
<em>Find where the functions intersect (x-values) to determine the bounds of integration.</em>
Simply graph the functions to see where the functions intersect (See Graph Attachment).
Interval: [-1, 1]
Lower bound: -1
Upper Bound: 1
<u>Step 3: Find Area of Region</u>
<em>Integration</em>
- Substitute in variables [Area of a Region Formula]:                                     ![\displaystyle A = \int\limits^1_{-1} {[x^2 - x^6]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5E1_%7B-1%7D%20%7B%5Bx%5E2%20-%20x%5E6%5D%7D%20%5C%2C%20dx) 
- [Area] Rewrite [Integration Property - Subtraction]:                                      
- [Area] Integrate [Integration Rule - Reverse Power Rule]:                            
- [Area] Evaluate [Integration Rule - FTC 1]:                                                     
- [Area] Subtract:                                                                                                
Topic: AP Calculus AB/BC (Calculus I/II)  
Unit: Area Under the Curve - Area of a Region (Integration)  
Book: College Calculus 10e
 
        
             
        
        
        
Answer:
Step-by-step explanation:
11.9 divided by 7 = 1.7
She uses 1.7 yards per apron