The correct answer is 720 I did this problem long time ago hope this helps :)
Answer:
c the number of the person who is this and what is the address of the house and the
Step-by-step explanation:
thanks for your help and support you in whatever way you can get a good
Answer:
Minimum 66 feet of molding that he needs.
Step-by-step explanation:
Given that a square ceiling has a diagonal of 23 ft.
If the sides of the square ceiling are 'a' feet, then applying Pythagoras Theorem we can write, a² + a² = 23²
⇒ 2a² = 23²
⇒ a = 16.2634 feet (Approximate)
Now, the perimeter of the square ceiling will be 4a = 65.05 feet.
If the cost of molding along the perimeter of the ceiling is in per foot, then a minimum of 66 feet of molding that he needs. (Answer)
Part A
Answers:
Mean = 5.7
Standard Deviation = 0.046
-----------------------
The mean is given to us, which was 5.7, so there's no need to do any work there.
To get the standard deviation of the sample distribution, we divide the given standard deviation s = 0.26 by the square root of the sample size n = 32
So, we get s/sqrt(n) = 0.26/sqrt(32) = 0.0459619 which rounds to 0.046
================================================
Part B
The 95% confidence interval is roughly (3.73, 7.67)
The margin of error expression is z*s/sqrt(n)
The interpretation is that if we generated 100 confidence intervals, then roughly 95% of them will have the mean between 3.73 and 7.67
-----------------------
At 95% confidence, the critical value is z = 1.96 approximately
ME = margin of error
ME = z*s/sqrt(n)
ME = 1.96*5.7/sqrt(32)
ME = 1.974949
The margin of error is roughly 1.974949
The lower and upper boundaries (L and U respectively) are:
L = xbar-ME
L = 5.7-1.974949
L = 3.725051
L = 3.73
and
U = xbar+ME
U = 5.7+1.974949
U = 7.674949
U = 7.67
================================================
Part C
Confidence interval is (5.99, 6.21)
Margin of Error expression is z*s/sqrt(n)
If we generate 100 intervals, then roughly 95 of them will have the mean between 5.99 and 6.21. We are 95% confident that the mean is between those values.
-----------------------
At 95% confidence, the critical value is z = 1.96 approximately
ME = margin of error
ME = z*s/sqrt(n)
ME = 1.96*0.34/sqrt(34)
ME = 0.114286657
The margin of error is roughly 0.114286657
L = lower limit
L = xbar-ME
L = 6.1-0.114286657
L = 5.985713343
L = 5.99
U = upper limit
U = xbar+ME
U = 6.1+0.114286657
U = 6.214286657
U = 6.21