See the attached picture.
Answer:
![\sqrt[3]{x^{10} }[\tex]Step-by-step explanation:Exponential Rules:[tex]x^{a} + x^{b} = x^{a + b}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E%7B10%7D%20%7D%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3E%3Cstrong%3EStep-by-step%20explanation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EExponential%20Rules%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5Dx%5E%7Ba%7D%20%2B%20x%5E%7Bb%7D%20%3D%20x%5E%7Ba%20%2B%20b%7D)
![\sqrt[b]{x^{a} } =x^{\frac{a}{b} } Original Equation:[tex]\sqrt[3]{x^{10} } = x^{\frac{10}{3} } Answer:[tex]\sqrt[3]{x^{10} }[\tex]Convert the cubed root to a power. Cubed root = [tex]\frac{1}{3}](https://tex.z-dn.net/?f=%5Csqrt%5Bb%5D%7Bx%5E%7Ba%7D%20%7D%20%3Dx%5E%7B%5Cfrac%7Ba%7D%7Bb%7D%20%7D%20%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EOriginal%20Equation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Csqrt%5B3%5D%7Bx%5E%7B10%7D%20%7D%20%20%3D%20x%5E%7B%5Cfrac%7B10%7D%7B3%7D%20%7D%20%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EAnswer%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Csqrt%5B3%5D%7Bx%5E%7B10%7D%20%7D%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3EConvert%20the%20cubed%20root%20to%20a%20power.%20Cubed%20root%20%3D%20%5Btex%5D%5Cfrac%7B1%7D%7B3%7D)

Convert them, so they have a common denominator - 


[tex]\sqrt[3]{x^{10} }[\tex] = [tex]x^{\frac{10}{3} } [\tex]
The answer is: "
41 / 11 " ; or, write as: "
41 : 11 " .
__________________________________________________________Explanation:__________________________________________________________72/99 = (72÷9) / (99÷9) = 8/ 11 .
So, 3.727272727272... = "3

" .
→ "3

" = [(11 *3) + 8] / 11 = (33 + 8) / 11 = 41 / 11 .
__________________________________________________________ "41 / 11" cannot be simplified any further; so the answer is:
__________________________________________________________ "
41 / 11 " ; or, write as: "
41 : 11 " .
__________________________________________________________
Nvm wait I read the question wrong. The real answer would be 28, 28, 36