Answer:

Step-by-step explanation:
distance between two points:

we have:

You are looking for three consecutive integers whose sum is 93. First, divide 93 by 3 and get 31. Go one above 31 and one below. You get 30, 31 and 32 which sum to 93.
Answer:
45
Step-by-step explanation:
Let 'c' represent the number of pictures Chelsea took.
Let 's' represent the number of pictures Sonya took.
For last year's Thanksgiving, c + s = 236
For this year's Thanksgiving, let 'x' represent the number of photos taken in total. x = c + s, where c and s are two integers that are the same (c = s).
And we know that for both years, c + s + x = 500.
As we know that c + s is already 236 from last year, we can remove c + s from the equation in bold and replace it with 236 instead.
236 + x = 500.
Now we have to isolate the x term.
x = 500 - 236
x = 264.
We know that x = c + s, where c and s are the same, so we can just use one of the variables and double it (so you either get 2c or 2s - it doesn't matter which one you pick because they're both the same).
2c = 264
c = 132
c = s
s = 132.
Both took 132 pictures this year.
Answer:
The 95% confidence interval estimate of the population mean rating for Miami is (6.0, 7.5).
Step-by-step explanation:
The (1 - <em>α</em>)% confidence interval for the population mean, when the population standard deviation is not provided is:

The sample selected is of size, <em>n</em> = 50.
The critical value of <em>t</em> for 95% confidence level and (<em>n</em> - 1) = 49 degrees of freedom is:

*Use a <em>t</em>-table.
Compute the sample mean and sample standard deviation as follows:
![\bar x=\frac{1}{n}\sum X=\frac{1}{50}\times [1+5+6+...+10]=6.76\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{49}\times 31.12}=2.552](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum%20X%3D%5Cfrac%7B1%7D%7B50%7D%5Ctimes%20%5B1%2B5%2B6%2B...%2B10%5D%3D6.76%5C%5C%5C%5Cs%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bn-1%7D%5Csum%20%28x-%5Cbar%20x%29%5E%7B2%7D%7D%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B49%7D%5Ctimes%2031.12%7D%3D2.552)
Compute the 95% confidence interval estimate of the population mean rating for Miami as follows:


Thus, the 95% confidence interval estimate of the population mean rating for Miami is (6.0, 7.5).