Sattelites don't need any fuel to stay in orbit. The applicable law is...."objects in motion tend to stay in motion". Having reached orbital velocity, any such object is essentially "falling" around the earth. Since there is no (or at least very little) friction in the vacuum of space, the object does not slow.... It simply continues.
Sattelites in "low" earth orbit do encounter some friction from the very thin upper atmosphere, and they will eventually "decay".
:)
Answer:

Explanation:
Light rays coming from moon is blocked by the pencil
so as per figure we know that angle subtended by pencil and angle subtended by moon must be same
so we have

so we have

so we have

As altitude increases, temperature increases.
The stratosphere is the part of the atmosphere that starts in the tropopause and ends in the estratopause. In the troposphere, the air is close to the Earth surface. The air surface can absorb more sunlight energy than the air, so the Earth surface heats the air. As you go higher, the distance to the Earth surface is higher, so the temperature is lower. The troposphere ends in the tropopause, where this trend changes. In the estratopause, there is a lot of ozone, which absorbs the dangerous UV radiation and converts into heat. That heat warms the air. So the air which is close to the estratopause is warm because of the heat released by the ozone reactions. The tropopause is far from the Earth surface and far from the ozone layer, that’s why it is cold. So the tropopause is cold and the estratopause is warm, which means: the air becomes warmer <span>as you rise above the tropopause until you get to the estratopause.</span>
G is the answer for apex vs / Chehhhh
Answer:
The drift speed of the electrons in the wire is 2.12x10⁻⁴ m/s.
Explanation:
We can find the drift speed by using the following equation:
Where:
I: is the current = 4.50 A
n: is the number of electrons
q: is the modulus of the electron's charge = 1.6x10⁻¹⁹ C
A: is the cross-sectional area = 2.20x10⁻⁶ m²
We need to find the number of electrons:
Now, we can find the drift speed:
Therefore, the drift speed of the electrons in the wire is 2.12x10⁻⁴ m/s.
I hope it helps you!