Using Newton's second law;
F = ma, where m = mass, a = acceleration or deceleration
a = Δv/t = (v-u)/t, but v= 0, u = 10 m/s, t = 1.
Then,
a = (0-10)1 = -10 m/s^2
Substituting;
F = ma = 10*-10 = -100 N
The mattress exerts 100 N to stop the ball.
Answer:
The temperature required is near about 3 million kelvin
Explanation:
The brilliance of the star results from the nuclear reaction that take place in the core of the star and radiate a huge amount of thermal energy resulting from the fusion of hydrogen into helium.
For this reaction to take place, the temperature of the star's core must be near about 3 million kelvin.
The hydrogen atoms collide and starts and the energy from the collision results in the heating of the gas cloud. As the temperature comes to near about
, the nuclear fusion reaction takes place in the core of the gas cloud.
The huge amount of thermal energy from the nuclear reaction gives the gas cloud a brilliance resulting in a protostar.
The answer is weak.
The interaction of nature that will depend on the distance through the
way it acts and involved in beta decay is the weak interaction or the weak
force. This interaction is the responsible for radioactive decay which also
plays a significant role in nuclear fission.