Answer:
a) Time = 2.67 s
b) Height = 35.0 m
Explanation:
a) The time of flight can be found using the following equation:
(1)
Where:
: is the final position in the horizontal direction = 80 m
: is the initial position in the horizontal direction = 0
: is the initial velocity in the horizontal direction = 30 m/s
a: is the acceleration in the horizontal direction = 0 (the stone is only accelerated by gravity)
t: is the time =?
By entering the above values into equation (1) and solving for "t", we can find the time of flight of the stone:

b) The height of the hill is given by:
Where:
: is the final position in the vertical direction = 0
: is the initial position in the vertical direction =?
: is the initial velocity in the vertical direction =0 (the stone is thrown horizontally)
g: is the acceleration due to gravity = 9.81 m/s²
Hence, the height of the hill is:
I hope it helps you!
Answer: 3.142656 × 10^16 feet
Explanation: Given that the
Speed = 982,080,000 ft/s, and
Time = 32,000,000 seconds
The formula for speed is:
Speed = distance/ time
Make distance the subject of formula
Since the time is second in one year and speed is ft/s, substitute both into the formula
Distance = speed × time
distance = 982,080,000 × 32,000,000
Distance = 3.142656 × 10^16 feet.
The distance of one light year in feet is 3.142656 × 10^16
Cacu. H2SO.chemical properties related to the used in chemical property
Do you need help with all of them
The time for half the atoms in a radioactive substance to disintegrate
https://www.vocabulary.com/dictionary/half-life