The gravity is pushing rhe boat down
Given:
Dy= 20 m
Vi = 5.0 m/s horizontally
A=9.81 m/s^2
Find:
Horizontal displacement
Solution:
D=ViT+(1/2)AT^2
Dy=(1/2)AT^2
T^2=Dy/(1/2)A
T=sqrt(Dy/(1/2)A)
T=sqrt(20/4.905)
T=2.0s
Dx=ViT
Dx=(5.0)(2.0)
Dx=10. meters
The value of cos θ in the given figure is 0.98.
<h3>
What is cosine of an angle?</h3>
The cosine of an angle is defined as the sine of the complementary angle.
The complementary angle equals the given angle subtracted from a right angle, 90.
cos θ = sin(90 - θ)
For example, if the angle is 30°, then its complement is 60°
cos 30 = sin(90 - 30)
cos 30 = sin 60
0.866 = 0.866
<h3>Cosine of an angle with respect to sides of a right triangle</h3>
cos θ = adjacent side / hypotenuse side
adjacent side of the given right triangle is calculated as follows;
adj² = 10² - 2²
adj² = 100 - 4
adj² = 96
adj = √96
adj = 9.8
cos θ = 9.8/10
cos θ = 0.98
Thus, the value of cos θ in the given figure is 0.98.
Learn more about cosine of angles here: brainly.com/question/23720007
#SPJ1
About 5 hours gooood luck
Answer:
0.125 volts
Explanation:
The induced emf can be sufficient to stimulate neuronal activity.
One such device generates a magnetic field within the brain that rises from zero to 1.5 T in 120 ms.
We need to find the induced emf within a circle of tissue of radius 1.6 mm and that is perpendicular to the direction of the field. The formula for the induced emf is given by :

Where
is magnetic flux
So,

So, the induced emf is equal to 0.125 volts.