Answer:
5.5 L
Explanation:
First we <u>convert 10 g of propane gas</u> (C₃H₈) to moles, using its <em>molar mass</em>:
- 10 g ÷ 44 g/mol = 0.23 mol
Then we <u>use the PV=nRT formula</u>, where:
- P = 1 atm & T = 293 K (This are normal conditions of T and P)
- R = 0.082 atm·L·mol⁻¹·K⁻¹
1 atm * V = 0.23 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 293 K
Unlikely. It's unlikely for ammonium ion
to accept a proton
and act as a Bronsted-Lowry Acid.
<h3>Explanation</h3>
What's the definition of Bronsted-Lowry acids and bases?
- Bronsted-Lowry Acid: a species that can donate one or more protons
in a reaction.
- Bronsted-Lowry Base: a species that can accept one or more protons

Ammonium ions
are positive. Protons
are also positive.
Positive charges repel each other, which means that it will be difficult for
to accept any additional protons. As a result, it's unlikely that
will accept <em>any</em> proton and act like a Bronsted-Lowry Base.
There are 1,000m is 1k. So just move the decimal one position right. 127.56m
There are 10,000cm in 1k. Move the decimal two positions right. 1275.6cm
<u>Answer:</u> The original element is 
<u>Explanation:</u>
Alpha decay is defined as the process in which alpha particle is emitted. In this process, a heavier nuclei decays into a lighter nuclei. The alpha particle released carries a charge of +2 units.
The released alpha particle is also known as helium nucleus.

For the given alpha decay process of an isotope:

<u>To calculate A:</u>
Total mass on reactant side = total mass on product side
A = 208 + 4
A = 212
<u>To calculate Z:</u>
Total atomic number on reactant side = total atomic number on product side
Z = 82 + 2
Z = 84
The isotopic symbol of unknown element is 
Hence, the original element is 