You can stop the burning of methane with water or carbon dioxide extinguishers but problems arise when you try to use this to stop the burning of the magnesium.
Explanation:
To burn magnesium (Mg) and methane (CH₄) you need to react them with oxygen:
2 Mg (s) + O₂ (g) → 2 MgO + heat
CH₄ (g) + 2 O₂ (g) → CO₂ (g) + 2 H₂O (g) + heat
However at that temperatures magnesium (Mg) is able to react with water (H₂O) and carbon dioxide (CO₂).
Mg (s) + 2 H₂O (l) → Mg(OH)₂ (s) + H₂ (g)
2 Mg (s) + CO₂ (g) → 2 MgO (s) + C (s)
So the safe option to stop the burning of the magnesium is to limit the oxygen in the air.
we have used the following notations:
(s) - solid
(g) - gas
(l) - liquid
Learn more about:
combustion reactions
brainly.com/question/13824679
#learnwithBrainly
<span>293 grams
The formula for the wavelength of a massive particle is
λ = h/p
where
λ = wavelength
h = Plank constant (6.626070040Ă—10^â’34 J*s)
p = momentum (mass times velocity)
So let's solve for momentum and from there get the mass
λ = h/p
λp = h
p = h/λ
Substitute known values and solve
p = 6.626070040Ă—10^â’34 J*s/3.45Ă—10^-34 m
p = 1.92 J*s/m
Since momentum is the product of mass and velocity, we have
p = M * V
p/V = M
So substitute again, and solve.
p/V = M
1.92 J*s/m / 6.55 m/s = M
1.92 kg*m/s / 6.55 m/s = M
1.92 kg*m/s / 6.55 m/s = M
0.293 kg = M
So the mass is 293 grams</span>
Answer:
Volume occupied by oxygen gas at 15 degree centigrade is equal to
centimeter cube
Explanation:
Assuming Pressure is constant.

where T1 and T2 are temperature in Kelvin
Substituting the give values we get-


Volume occupied by oxygen gas at 15 degree centigrade is equal to
centimeter cube
Answer:
Molar mass of solute: 300g/mol
Explanation:
<em>Vapor pressure of pure benzene: 0.930 atm</em>
<em>Assuming you dissolve 10.0 g of the non-volatile solute in 78.11g of benzene and vapour pressure of solution was found to be 0.900atm</em>
<em />
It is possible to answer this question based on Raoult's law that states vapor pressure of an ideal solution is equal to mole fraction of the solvent multiplied to pressure of pure solvent:

Moles in 78.11g of benzene are:
78.11g benzene × (1mol / 78.11g) = <em>1 mol benzene</em>
Now, mole fraction replacing in Raoult's law is:
0.900atm / 0.930atm = <em>0.9677 = moles solvent / total moles</em>.
As mole of solvent is 1:
0.9677× total moles = 1 mole benzene.
Total moles:
1.033 total moles. Moles of solute are:
1.033 moles - 1.000 moles = <em>0.0333 moles</em>.
As molar mass is the mass of a substance in 1 mole. Molar mass of the solute is:
10.0g / 0.033moles = <em>300g/mol</em>