Answer:
How many drinks should be sold to get a maximal profit? 468
Sales of the first one = 345 cups
Sales of the second one = 123 cups
Step-by-step explanation:
maximize 1.2F + 0.7S
where:
F = first type of drink
S = second type of drink
constraints:
sugar ⇒ 3F + 10S ≤ 3000
juice ⇒ 9F + 4S ≤ 3600
coffee ⇒ 4F + 5S ≤ 2000
using solver the maximum profit is $500.10
and the optimal solution is 345F + 123S
Answer: y = 5x − 11
Step-by-step explanation:
The equation of a straight line can be represented in the slope-intercept form, y = mx + c
Where c = intercept
Slope, m =change in value of y on the vertical axis / change in value of x on the horizontal axis represent
change in the value of y = y2 - y1
Change in value of x = x2 -x1
y2 = final value of y
y 1 = initial value of y
x2 = final value of x
x1 = initial value of x
The line passes through (3,4) and (2, -1),
y2 = - 1
y1 = 4
x2 = 2
x1 = 3
Slope,m = (- 1 - 4)/(2 - 3) = - 5/- 1 = 5
To determine the y intercept, we would substitute x = 3, y = 4 and m= 5 into
y = mx + c. It becomes
4 = 5 × 3 + c
4 = 15 + c
c = 4 - 15 = - 11
The equation becomes
y = 5x - 11
Answer:
a = 1.95
Step-by-step explanation:
40a - 61 = 17
40a - 61 + 61 = 17 + 61
40a = 78
40a / 40 = 78 / 40
a = 1.95
Because we know the midpoint is in the middle, we know that both sides are equal.
So set both = to each other
4x - 1 = 3x + 3
add 1 to both sides
4x=3x+4
then subtract 3x from both sides and because there is always a 1 in front of x the answer would be
x=4