1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ra1l [238]
3 years ago
7

Choose the expression that represents a linear expression.

Mathematics
2 answers:
tresset_1 [31]3 years ago
6 0

Answer:

Step-by-step explanation:

A linear expression has the highest power of the variable to 1, i.e ax+b

Then only the first option is in a linear expression format

9x-2

eduard3 years ago
5 0

Answer:

9x-2

Step-by-step explanation:

You might be interested in
Evaluate 5z^2 when z = 3 and when z = -3
erastova [34]
When Z=3 it is 45 and when Z=-3 it is also 45.
3 0
3 years ago
Read 2 more answers
A light bulb is designed by revolving the graph of:
nadya68 [22]

Answer:

\displaystyle 0.251327 \ in. \ of \ glass

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Expand by FOIL (First Outside Inside Last)
  • Factoring

<u>Calculus</u>

Differentiation

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration

  • Integration Property: \displaystyle \int\limits^a_b {cf(x)} \, dx = c \int\limits^a_b {f(x)} \, dx
  • Fundamental Theorem of Calculus: \displaystyle \int\limits^a_b {f(x)} \, dx = F(b) - F(a)
  • Area between Two Curves
  • Volumes of Revolution
  • Arc Length Formula: \displaystyle AL = \int\limits^a_b {\sqrt{1+ [f'(x)]^2}} \, dx
  • Surface Area Formula: \displaystyle SA = 2\pi \int\limits^a_b {f(x) \sqrt{1+ [f'(x)]^2}} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}\\Interval: [0, \frac{1}{3}]

<u>Step 2: Differentiate</u>

  1. Basic Power Rule:                    \displaystyle y' = \frac{1}{2} \cdot \frac{1}{3}x^{\frac{1}{2} - 1} - \frac{3}{2} \cdot x^{\frac{3}{2} - 1}
  2. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6}x^{\frac{-1}{2}} - \frac{3}{2}x^{\frac{1}{2}}
  3. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute [Surface Area]:                                                                             \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{1+ [\frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}]^2}} \, dx
  2. [Integral - √Radical] Expand/Add:                                                               \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{81x^2+18x+1}{36x}} \, dx
  3. [Integral - √Radical] Factor:                                                                         \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{(9x + 1)^2}{36x}} \, dx
  4. [Integral - Simplify]:                                                                                       \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {-\frac{|9x + 1|(3x - 1)}{18}} \, dx
  5. [Integral] Integration Property:                                                                     \displaystyle SA = \frac{- \pi}{9} \int\limits^{\frac{1}{3}}_0 {|9x + 1|(3x - 1)} \, dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Define:                                                                                             \displaystyle \int {|9x + 1|(3x - 1)} \, dx
  2. [Integral] Assumption of Positive/Correction Factors:                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {(9x + 1)(3x - 1)} \, dx
  3. [Integral] Expand - FOIL:                                                                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {27x^2 - 6x - 1} \, dx
  4. [Integral] Integrate - Basic Power Rule:                                                         \displaystyle \frac{9x + 1}{|9x + 1|} (9x^3 - 3x^2 - x)
  5. [Expression] Multiply:                                                                                      \displaystyle \frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|}

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] Substitute/Integral - FTC:                                                              \displaystyle SA = \frac{- \pi}{9} (\frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|})|\limits_{0}^{\frac{1}{3}}
  2. [Integrate] Evaluate FTC:                                                                                \displaystyle SA = \frac{- \pi}{9} (\frac{-1}{3})
  3. [Expression] Multiply:                                                                                     \displaystyle SA = \frac{\pi}{27} \ ft^2

<em>It is in ft² because it is given that our axis are in ft.</em>

<u>Step 6: Find Amount of Glass</u>

<em>Convert ft² to in² and multiply by 0.015 in (given) to find amount of glass.</em>

  1. Convert ft² to in²:                    \displaystyle \frac{\pi}{27} \ ft^2 \ \div 144 \ in^2/ft^2 = \frac{16 \pi}{3} \ in^2
  2. Multiply:                                   \displaystyle \frac{16 \pi}{3} \ in^2 \cdot 0.015 \ in = 0.251327 \ in. \ of \ glass

And we have our final answer! Hope this helped on your Calc BC journey!

5 0
3 years ago
What are the coordinates of the image of vertex R after a reflection across the y-axis?
vfiekz [6]
Consider any point P(x, y) in the coordinate axis.

The reflection of this point across the y-axis is the point P'(-x, y).

(x, y) and (-x, y) are the 'mirror' images of each other, with the y'axis as the 'mirror'.

For example the coordinates of the image of P(4, 13) after the reflection across the y-axis is P'(-4, 13)

or, if P(-5, -9), then P'(5, -9)


Answer: if coordinates of V are (h, k), coordinates of V' are (-h, k) 



3 0
3 years ago
Read 2 more answers
Pls answer this asap
zimovet [89]

Answer:

$20.44

Step-by-step explanation:

first solve for the whole thing

10 x 6 = 60

now to the red part

2 x 1.5 = 3

now the blue

r^2 * pi = a

2^2 * 3.14

4 * 3.14 = 12.56

now add red and blue

3 + 12.56 = 15.56

now subtract that sum from the whole

60 - 15.56 = 44.44

now do

44.44 / 10 = 4.444

now see how much it would cost for the grass

4.444 * 4.60 = 20.4424 ≈ 20.44

it would cost $20.44 to get the grass reseeded

6 0
3 years ago
Read 2 more answers
after every eighth visit to a restaurant you receive a free beverage.after every tenth visit you receive a free appetizer. if yo
Alik [6]

On the 40th and the 80th you will receive both a free beverage and a free appetizer. You can find this by simply finding the multiples of both number up to 100 (or a little more than 100) to find out on which dates you'd get bothe an appetizer and beverage for free. Here are the multiples of both, to prove this answer.

  • 8: 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104.
  • 10: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.

Thus making 40 and 80 the answers. I hope this helps!

3 0
3 years ago
Other questions:
  • The equation 2y+53=165 represents the situation “ Joel spent $165 on a pair of jeans and two shirts at the same price.” What doe
    15·2 answers
  • Need help with an graph --&gt; equation
    11·1 answer
  • Evaluate the function requested. Write your answer as a fraction in lowest terms.<br> Find tan A.
    5·1 answer
  • PLEASE HELP!! SHOW WORK!!A bag has five red marbles, six blue marbles, and four black marbles. What is the probability of pickin
    10·1 answer
  • Elena walked twelve miles. Then she walked 0.25 that distance. How far did she walk all together?
    9·1 answer
  • An isosceles triangle has an angle that measures 90°. which other angles could be in that isosceles triangle? choose all that ap
    14·1 answer
  • Find an equation of the line perpendicular to Y equals 3X -3 and passes through the point -3 and -1
    10·1 answer
  • Solve.<br> -<br> 7 1/2 ÷ ( 4 1/2 - 5 1/8 ) = ?
    15·2 answers
  • Triangle abc is equilateral, solve for x and y​
    12·1 answer
  • Please help me under stand this
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!