Answer:
A. Orthocenter
Step-by-step explanation:
In the given triangle, ΔWKS, the drawing shown the construction of a perpendicular line to the side KS that pass through the vertex <em>W </em>of ΔWKS. Therefore, the completed construction gives an altitude of the triangle ΔWKS
Repeating the same procedure from the vertex <em>S</em> to construct the perpendicular line (altitude) to the side WK, and from the vertex <em>K</em> the perpendicular line (altitude) to the side WS gives the three altitudes of the triangle
The point of intersection (the point of concurrency) of the three altitudes is the <em>orthocenter </em>of the triangle and the drawing would therefore be a step in finding the <em>orthocenter </em>of a triangle.
Answer:
D. N(a) = (a + 20)/3
Step-by-step explanation:
A(n) = 3n - 20
A is a function of n. The inverse will be: N is a function of a.
Change A(n) to y and n to x.
y = 3x - 20
Switch x and y.
x = 3y - 20
Solve for y.
x + 20 = 3y
3y = x + 20
y = (x + 20)/3
Now switch y to N(a) and x to a.
Answer: N(a) = (a + 20)/3
Purple line: axis of symmetry
Orange curve: parabola
Black dots: zero, x intercept, asymptote
Red dot: minimum, maximum, dilation
You can make 24 packages of coookies.
192 ounces are in 12 pounds.
Take 192/8 to get 24.
Answer:
The value is 
Step-by-step explanation:
From the question we are told that
The first equation is 
The second equation is 
Generally the first point of intersection of the first and second equation is x = 0
Generally the obtain the second point of intersection of the two equation we equate the two equations
So
=> 
=> 
=> 
Generally the from washer method we have
![V(x) = \int\limits^4_0 {\pi [(H(x))^2 - (G(x))^2]} \, dx](https://tex.z-dn.net/?f=V%28x%29%20%3D%20%20%5Cint%5Climits%5E4_0%20%7B%5Cpi%20%5B%28H%28x%29%29%5E2%20-%20%28G%28x%29%29%5E2%5D%7D%20%5C%2C%20dx)
So

and

So
![V(x) = \int\limits^4_0 {\pi [(16\sqrt{x})^2 - (4x)^2]} \, dx](https://tex.z-dn.net/?f=V%28x%29%20%3D%20%20%5Cint%5Climits%5E4_0%20%7B%5Cpi%20%5B%2816%5Csqrt%7Bx%7D%29%5E2%20-%20%284x%29%5E2%5D%7D%20%5C%2C%20dx)
=> ![V(x) = \int\limits^4_0 {\pi [256x - 16x^2]} \, dx](https://tex.z-dn.net/?f=V%28x%29%20%3D%20%20%5Cint%5Climits%5E4_0%20%7B%5Cpi%20%5B256x%20-%2016x%5E2%5D%7D%20%5C%2C%20dx)
=>![V(x) = \pi [256 \frac{x^2}{2} - 16 \frac{x^3}{3} ]|\left 4} \atop 0}} \right.](https://tex.z-dn.net/?f=V%28x%29%20%3D%20%20%5Cpi%20%5B256%20%5Cfrac%7Bx%5E2%7D%7B2%7D%20-%2016%20%5Cfrac%7Bx%5E3%7D%7B3%7D%20%5D%7C%5Cleft%204%7D%20%5Catop%200%7D%7D%20%5Cright.)
=> ![V(x) = \pi [256 * \frac{ 4^2}{2} - 16 * \frac{4^3}{3} ]](https://tex.z-dn.net/?f=V%28x%29%20%3D%20%20%5Cpi%20%5B256%20%2A%20%5Cfrac%7B%204%5E2%7D%7B2%7D%20%20-%2016%20%2A%20%5Cfrac%7B4%5E3%7D%7B3%7D%20%5D)
=> 