<h3>
Answer:</h3>
Fe₂O₃(s) + 3CO(g) → 2Fe(s) + 3CO₂(g)
<h3>
Explanation:</h3>
Concept tested: Balancing of chemical equations
- A chemical equation is balanced by putting appropriate coefficients on the products and reactants of the equation.
- Balancing chemical equations ensures that chemical equations obey law of conservation of mass.
- In this case; to balance the above equation we put the coefficients, 1, 3, 2, and 3 on the reactants and products.
- Therefore; the balanced chemical equation for the reaction is;
Fe₂O₃(s) + 3CO(g) → 2Fe(s) + 3CO₂(g)
Q1. TI (210/81Thallium)
Q2.
The answers are opposite from each other
You must add 45 mL of the 80 % alcohol to the 30 % alcohol to get a 35 % solution.
You can use a modified dilution formula to calculate the volume of 80 % alcohol
V1×C1 + V2×C2 = V3×C3
Let the volume of 80 % mixture 1 = <em>x</em> mL. Then the volume of the final 35 % mixture 3 = (405 + <em>x</em> ) mL
(<em>x</em> mL×80 % alc) + (405 mL×30 % alc) = (405 + <em>x</em>)mL × 35 % alc
80x + 12 150 = 14 175 + 35 x
45x = 2025
x = 2025/45 = 45
Concentration of Ni in 20mL = 5.28ppm x dilution factor = 5.28 x 100/5 = 105.6 ppm = 105.6 mg/L
molar mass of Ni = 58.6934 g
<span>Molarity of Ni = 100.40 x 10^{-3} / 58.6934 = 1.71 x 10^{-3} M = 1.71 mM. </span>