Answer:

Step-by-step explanation:
Rn(x) →0
f(x) = 10/x
a = -2
Taylor series for the function <em>f </em>at the number a is:

............ equation (1)
Now we will find the function <em>f </em> and all derivatives of the function <em>f</em> at a = -2
f(x) = 10/x f(-2) = 10/-2
f'(x) = -10/x² f'(-2) = -10/(-2)²
f"(x) = -10.2/x³ f"(-2) = -10.2/(-2)³
f"'(x) = -10.2.3/x⁴ f'"(-2) = -10.2.3/(-2)⁴
f""(x) = -10.2.3.4/x⁵ f""(-2) = -10.2.3.4/(-2)⁵
∴ The Taylor series for the function <em>f</em> at a = -4 means that we substitute the value of each function into equation (1)
So, we get
Or 
Answer:
Exponent laws:
1. Product law

In product law if bases are same then we add their respective powers.But if bases are different we can't add their powers.
x=base, a,b,c=exponent
If x=2 and a=3, b=5 , and c=10, then

2.Product raised to a power
1. ![[x^{a}]^{c}=x^{ac}](https://tex.z-dn.net/?f=%5Bx%5E%7Ba%7D%5D%5E%7Bc%7D%3Dx%5E%7Bac%7D)
2. ![[x^{a}\times x^{b}]^{c}=[x^{a+b}]^{c}=x^{ac+bc}](https://tex.z-dn.net/?f=%5Bx%5E%7Ba%7D%5Ctimes%20x%5E%7Bb%7D%5D%5E%7Bc%7D%3D%5Bx%5E%7Ba%2Bb%7D%5D%5E%7Bc%7D%3Dx%5E%7Bac%2Bbc%7D)
If product is raised to a certain power , keeping the base same , we just multiply the powers.for example
and
![[2^{3}\times3^{2}]^{2}=[2^{3}]^2 \times[3^{2}]^{2}=2^{6}\times3^{4}](https://tex.z-dn.net/?f=%5B2%5E%7B3%7D%5Ctimes3%5E%7B2%7D%5D%5E%7B2%7D%3D%5B2%5E%7B3%7D%5D%5E2%20%5Ctimes%5B3%5E%7B2%7D%5D%5E%7B2%7D%3D2%5E%7B6%7D%5Ctimes3%5E%7B4%7D)
![[2^{3}\times2^{2}]^{2}=[2^{3+2}]^{2}=[2^{5}]^{2}=2^{10}](https://tex.z-dn.net/?f=%5B2%5E%7B3%7D%5Ctimes2%5E%7B2%7D%5D%5E%7B2%7D%3D%5B2%5E%7B3%2B2%7D%5D%5E%7B2%7D%3D%5B2%5E%7B5%7D%5D%5E%7B2%7D%3D2%5E%7B10%7D)
Answer:
true
Step-by-step explanation:
as negative takeaway a negative is positive so 8-(-4)= 8+4=12
Answer:
702.1
Step-by-step explanation:
Use the formula for the diagonal of a cuboid.
√(l^2+b^2+h^2)
√(33^2+56^2+33^2)
√5314
= 702.125345