1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anon25 [30]
3 years ago
14

What is the error? 1.5x-2=-2+1.5x -2=2

Mathematics
2 answers:
OLga [1]3 years ago
7 0
They removed the variable from both sides of the equation instead of just from one side!
Kryger [21]3 years ago
5 0

Answer:

obj?

Step-by-step explanation:

You might be interested in
62 less than twice victors score
timurjin [86]
You equation is 62-2x
4 0
3 years ago
Read 2 more answers
$2.25
DiKsa [7]
2.50 that is the answer

8 0
3 years ago
Tulong nmn po plsss​
mylen [45]

Answer:

tohw9

ufpa

Step-by-step explanation:

jfapn

abjllj shllhphkvq gohahogsv 79qy75j

7 0
3 years ago
Find the 2nd Derivative:<br> f(x) = 3x⁴ + 2x² - 8x + 4
ad-work [718]

Answer:

f''(x)=36x^2+4

Step-by-step explanation:

Let's start by finding the first derivative of f(x)= 3x^4+2x^2-8x+4. We can do so by using the power rule for derivatives.

The power rule states that:

  • \frac{d}{dx} (x^n) = n \times x^n^-^1

This means that if you are taking the derivative of a function with powers, you can bring the power down and multiply it with the coefficient, then reduce the power by 1.

Another rule that we need to note is that the derivative of a constant is 0.

Let's apply the power rule to the function f(x).

  • \frac{d}{dx} (3x^4+2x^2-8x+4)

Bring the exponent down and multiply it with the coefficient. Then, reduce the power by 1.

  • \frac{d}{dx} (3x^4+2x^2-8x+4) = ((4)3x^4^-^1+(2)2x^2^-^1-(1)8x^1^-^1+(0)4)

Simplify the equation.

  • \frac{d}{dx} (3x^4+2x^2-8x+4) = (12x^3+4x^1-8x^0+0)
  • \frac{d}{dx} (3x^4+2x^2-8x+4) = (12x^3+4x-8(1)+0)
  • \frac{d}{dx} (3x^4+2x^2-8x+4) = (12x^3+4x-8)
  • f'(x)=12x^3+4x-8

Now, this is only the first derivative of the function f(x). Let's find the second derivative by applying the power rule once again, but this time to the first derivative, f'(x).

  • \frac{d}{d} (f'x) = \frac{d}{dx} (12x^3+4x-8)
  • \frac{d}{dx} (12x^3+4x-8) = ((3)12x^3^-^1 + (1)4x^1^-^1 - (0)8)

Simplify the equation.

  • \frac{d}{dx} (12x^3+4x-8) = (36x^2 + 4x^0 - 0)
  • \frac{d}{dx} (12x^3+4x-8) = (36x^2 + 4(1) - 0)
  • \frac{d}{dx} (12x^3+4x-8) = (36x^2 + 4 )

Therefore, this is the 2nd derivative of the function f(x).

We can say that: f''(x)=36x^2+4

6 0
2 years ago
Read 2 more answers
What is a triangle equal to​
VashaNatasha [74]

Answer:

A triangle equals 180 degrees.

4 0
3 years ago
Read 2 more answers
Other questions:
  • What would the answer to -|-24| be?
    11·1 answer
  • Irma has 5/6 yard of ribbon. She cuts it into 1/6 yard pieces. How many pieves of ribbon does she have?
    8·1 answer
  • A new car has a sticker price of $25,550, while the invoice price paid on it was $19.990 What is the percent amount of markup?
    11·2 answers
  • Answer the following questions CORRECTLY I will know if this is wrong. I WILL REPORT ANY INCORRECT ANSWERS!
    14·2 answers
  • Multiply, if possible.
    6·2 answers
  • Triangle ABC is similar to triangle PQR, as shown below:
    7·2 answers
  • What is the coefficient in the following expression? 5a2-7​
    12·1 answer
  • Reduce the Fractions 15/9to its Lowest Terms
    14·1 answer
  • After a rotation, A(-3,4) maps to A/4, 3), B(4.-5) maps to BY-5,-4), and C(1,6) maps to C(6.-1). Which rule
    8·1 answer
  • Item 10
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!