1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lidiya [134]
3 years ago
5

The College Board reports that 2% of students who take the SAT each year receive special accommodations because of documented di

sabilities. Consider a random sample of 25 students who have recently taken the test.
a. What is the probability that exactly 1 received a special accommodation?
b. What is the probability that at least 1 received a special accommodation?
c. What is the probability that at least 2 received a special accommodation?
d. What is the probability that the number among the 25 who received a special accommodation is within 2 standard deviations of the number you would expect to be accommodated?
e. Suppose that a student who does not receive a special accommodation is allowed 3 h for the exam, whereas an accommodated student is allowed 4.5 h. What would you expect the average time allowed the 25 selected students to be?
Mathematics
2 answers:
Serhud [2]3 years ago
7 0

Answer:

The solution the the given problem is given below.

Step-by-step explanation:

We have p = P(a student received a special accommodation) = 0.02,

so  with X = the number among the 25 who received a special accommodation, X ∼  Bin(25, 0.02).

a) The probability that exactly 1 received a special accommodation is :

P(X = 1) =

(0.02)^{1} (1-0.02)^{25-1} = 25(0.02)(0.098)^{24} ≈ 0.3079

b) The probability that at least 1 received a special accommodation is:

P(X ≥ 1) = 1 − P(X = 0) =  1 − (0.98)25 ≈ 1 − 0.6035 = 0.3965

c) The probability that at least 2 received a special accommodation is :

P(X ≥ 2) = 1 − P(X = 0) − P(X = 1) ≈ 1 − 0.6035 − 0.3079 = 0.0886

d) The mean and the standard deviation of X are:

µ = E(X) = np = 25(0.02) = 0.5,

σ = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{25(0.02)(0.98)} = \sqrt{0.49} = 0.7

Then, the probability that the number among the 25 who received a special accommodation is within 2 standard deviations of the expected number is :

P(|X − µ| ≤ 2σ) = P(X ≤ µ + 2σ) = P(X ≤ 0.5 + (2)(0.7)) = P(X ≤ 1.9)

= P(X = 0) + P(X = 1) ≈ 0.6035 + 0.3079 = 0.9114.

e) The average time allowed the 25 selected students will be:

\frac{(.5*4.5)+(24.5*3)}{25} = 3.03 hours.

Sonbull [250]3 years ago
5 0

Answer:

(a) P(X=1) = 0.3079

(b) P(X≥1) = 0.3965

(c) P(X≥2) = 0.0886

(d) P(X≤1.9) = 0.9114

(e) Expected no. of hours = 3.594 hours

Step-by-step explanation:

We have,

p = 0.02

n = 25

q = 1-p

q = 0.98

We will use the binomial distribution formula to solve this question. The formula is:

P(X=x) = ⁿCₓ pˣ qⁿ⁻ˣ

where n = total no. of trials

           x = no. of successful trials

           p = probability of success

           q = probability of failure

Let X be the number of students who received a special accommodation.

(a) P(X=1) = ²⁵C₁ (0.02)¹ (0.98)²⁵⁻¹

          = 25*0.02*0.61578

P(X=1) = 0.3079

(b) P(X≥1) = 1 - P(X<1)

               = 1 - P(X=0)

               = 1 - (²⁵C₀ (0.02)⁰ (0.98)²⁵⁻⁰)

              = 1 - 0.6035

   P(X≥1) = 0.3965

(c)  P(X≥2) = 1 - P(X<2)

                 = 1 - [P(X=0) + P(X=1)]

                 = 1 - (0.6035 + 0.3079)

                 = 1 - 0.9114

     P(X≥2) = 0.0886

(d) The probability that the number among 25 who received a special accommodation is within 2 standard deviations of the expected number of accommodations. This means we need to compute the probability P(X-μ≤2σ). For this we need to calculate the mean and standard deviation of this distribution.

μ = np = (25)*(0.02) = 0.5

σ = \sqrt{npq} = √(25)*(0.02)*(0.98) = √0.49 = 0.7

P(X-μ≤2σ) = P(X - 0.5≤ 2(0.7)) = P(X≤ 1.4 + 0.5) = P(X≤1.9)

P(X≤1.9) = P(X=0) + P(X=1)

             = 0.6035 + 0.3079

P(X≤1.9) = 0.9114

(e) Student who does not receive a special accommodation i.e. X=0 is given 3 hours for the exam whereas an accommodated student P(X>0) is given 4.5 hours. The expected average number of hours given on the exam can be calculated as:

Expected no. of hours = ∑x*P(x)

                                     = 3*P(X=0) + 4.5*P(X>0)

                                     = 3*0.6035 + 4.5(1 - P(X≤0))

                                     = 1.8105 + 4.5(1 - 0.6035)

                                     = 1.8105 + 1.78425

Expected no. of hours = 3.594 hours

You might be interested in
Two friends leave there houses and go towards each others, one friend runs 8 miles a hour, the other runs 7 miles an hour, there
natka813 [3]

hi there the answer is 7:30 see the picture

3 0
4 years ago
-1/2+-5/6 thank you
aleksandrvk [35]

Answer:

-1 1/3 hope this helps

Step-by-step explanation:

8 0
3 years ago
pretende-se guardar um cano de 42cm de comprimento em uma caixa de ferramentas retangular, cuja as medidas são 36cm de comprimen
galina1969 [7]

Answer:

Step-by-step explanation:

Não porque a caixa seria muito menor que o cano.

3 0
3 years ago
A construction company completes two projects. The first project has $3,000 in labor expenses for 60 hours worked, while the sec
d1i1m1o1n [39]

Answer: 2,100 = 0.02(42) + b

2,100 = 50(42) + b

Step-by-step explanation: good day man

3 0
2 years ago
HELP PLS 20 PTS PLSSSSSSSSSSS
Rama09 [41]

Answer:

(9,9)

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • What property could substitute cd
    14·1 answer
  • 15-29=
    10·1 answer
  • 2/3 of a full rotation
    7·2 answers
  • large cheese pizzas cost $5 each and large one topping pizzas cost $6 each. write an equation that represents the total cost, T
    14·1 answer
  • If f(x) = x3 – 2x2, which expression is equivalent to f(i)?
    14·1 answer
  • What is the quotient of the fractions below?<br> 3/5 divided by 5/11
    7·1 answer
  • How many cars can you wax with 1 bottle of wax
    8·1 answer
  • Find csc 0, sin 0, and cot 0, where is the angle shown in the figure. Give exact values, not decimals approximations. (LISTING B
    10·1 answer
  • FInd the area of the polygon
    11·2 answers
  • In which quadrant would you find the graph of (-5, -6)?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!