1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rainbow [258]
3 years ago
6

Multistep sandy charges each family that she babysits a flat fee of $10 for the night and an extra $5 per child.kimmi charges $2

5 per night no matter how many children a family has write a equation that compare the two girls also is the fees are the same how many children a family have to have in order to be the same
Mathematics
1 answer:
inna [77]3 years ago
7 0
Sandy: 10x + 5
Kimmi: 25x

If we want to know when the fees will be the same, we set the equations equal to each other and solve for x:
10x + 5 = 25x
5 = 15x
x = 3
So the number of children has to be 3. 
You might be interested in
5th grade math. correct answer will be marked brainliest
postnew [5]

The answer is b          

saddsadsadas

8 0
3 years ago
Read 2 more answers
What is the y-intercept of the line given by the equation y equals two x minus nine?
jenyasd209 [6]
Y-Intercept= -9

Your equation is Y=mx+b, and b is the Y-Intercept
8 0
3 years ago
Use the graph at the top to figure out the question. If someone could help they would be great! And brainliest.
mariarad [96]

Answer: A

Step-by-step explanation:

Each gallon costs 3 dollars.

8(gallons) times $3(for each gallon) = 24(dollars).

8 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
How much greater is the area of a a square with a side length of 8 inches than the area of a circle with radius of 4 inches?
expeople1 [14]
Area of a square= l²
                           = 8×8 = 64 in²

Area of  a circle= πr²
                         = π × 4²
                         = 50.3 in²
Difference = 64 - 50.3 = 13.7 in²
7 0
3 years ago
Other questions:
  • What would be the answer to .99x=.89x-10
    6·2 answers
  • What function's domain consists of all real numbers greater than 3
    12·1 answer
  • If sin=3/5 then what does tan equal
    9·2 answers
  • 1)The square shown has a perimeter of 32 units. The square is rotated about line k. 
    15·2 answers
  • Solve the system by linear combination. Show all your work.<br><br> 9x+5y=35<br> -2x-5y=0
    13·1 answer
  • Consider (2x – 1) + 2 &gt; x + 1. Use the addition or subtraction
    9·1 answer
  • State the point of intersection
    15·1 answer
  • Question 9 of 10
    10·1 answer
  • Cindy received a bank statement reporting the recent changes to her
    8·2 answers
  • Given that 212basex + 122basex=1111 basex.Find x​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!