Its A you just have to count the lines and say the numbers 1-4
Answer:
Here is your answer
Step-by-step explanation:
B) 2x + 5 = 7
vertical line
C) 2x - y = 6
oblique line
D) 3y + 9 = 0
horizontal line
Answer:

Step-by-step explanation:
If
, then
. It follows that
![\begin{aligned} \\\frac{g(x+h)-g(x)}{h} &= \frac{1}{h} \cdot [g(x+h) - g(x)] \\&= \frac{1}{h} \left( \frac{1}{x+h} - \frac{1}{x} \right)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5C%5C%5Cfrac%7Bg%28x%2Bh%29-g%28x%29%7D%7Bh%7D%20%26%3D%20%5Cfrac%7B1%7D%7Bh%7D%20%5Ccdot%20%5Bg%28x%2Bh%29%20-%20g%28x%29%5D%20%5C%5C%26%3D%20%5Cfrac%7B1%7D%7Bh%7D%20%5Cleft%28%20%5Cfrac%7B1%7D%7Bx%2Bh%7D%20-%20%5Cfrac%7B1%7D%7Bx%7D%20%5Cright%29%5Cend%7Baligned%7D)
Technically we are done, but some more simplification can be made. We can get a common denominator between 1/(x+h) and 1/x.

Now we can cancel the h in the numerator and denominator under the assumption that h is not 0.

We want to create a linear equation to model the given situation.
A) c(r) = $6.00 + $1.50*r
B) 19 rides.
We know that the carnival charges $6.00 for entry plus $1.50 for each ride.
A) With the given information we can see that if you ride for r rides, then the cost equation will be:
c(r) = $6.00 + $1.50*r
Where c(r) is the cost for going to the carnival and doing r rides.
B) If you have $35.00, then we can solve:
c(r) = $35.00 = $6.00 + $1.50*r
Now we can solve the equation for r.
$35.00 = $6.00 + $1.50*r
$35.00 - $6.00 = $1.50*r
$29.00 = $1.50*r
$29.00/$1.50 = r = 19.33
Rounding to the next whole number we get: r = 19
This means that with $35.00, Dennis could go to 19 rides.
If you want to learn more, you can read:
brainly.com/question/13738061