Technically molar mass cannot be in grams, it is in grams per mole. and it refers to a specific number of molecules of a substance, therefore substances have different molar masses because the elements have different weights. for example having 10 water molecules would be a lot heavier than having 10 air molecules
Answer: n=15.56moles
Explanation:
PV = nRT
where
P is pressure in atmospheres
V is volume in Liters
n is the number of moles of the gas
R is the ideal gas constant = given as (0.0821L -atm/k-mol
PV = nRT
n= PV/RT
n= (1.5 X 230)/ (0.0821 X 270)
n= 15.56 moles
Answer:
Energy was released
Explanation:
Decrease in temperature means less energy, but the energy had to have been transferred because energy can't be destroyed or created. So if the temp. went down, energy must have been lost. (If it had been absorbed, the temp. would have gone up)
In a titration, for an acid to neutralize a base, at the equivalence point, there should be an equal number of moles of H+ and OH-.
Moles of OH- can be found by multiplying the concentration of the base by the volume. (You will need to keep in mind the stoichimetric coefficients if the strong base is Ca(OH)₂, Ba(OH)₂, or Sr(OH)₂.
Moles of OH- = moles of H+
(0.253 M) * 0.005 L = 0.01000 L * c
c = 0.1265 M
The concentration of HBr is 0.127 M.