Answer:-ΔG=-101.5KJ
Explanation:We have to calculate ΔG for the reaction so using the formula given in the equation we can calculate the \Delta G for the reaction.
We need to convert the unit ofΔS in terms of KJ/Kelvin as its value is given in terms of J/Kelvin
Also we need to convert the temperature in Kelvin as it is given in degree celsius.

After calculating forΔG we found that the value ofΔG is negative and its value is -101.74KJ
For a reaction to be spontaneous the value of \Delta G \ must be negative .
As the ΔG for the given reaction is is negative so the reaction will be spontaneous in nature.
In this reaction since the entropy of reaction is positive and hence when we increase the temperature term then the overall term TΔS would become more positive and hence the value of ΔG would be less negative .
Hence the value of ΔG would become more positive with the increase in temperature.
So we found the value of ΔG to be -101.74KJ
If it has properties of metal and non metal it is considered a metalloid there are very few spots in which metalloids are located the spots I circled on a blank periodic tables are where the metalloids are located on an actual periodic table your only options are
boron(B) silicon(si) germanium(Ge) arsenic(As)antimony(Sb)tellurium(Te)astatine(At)those are the only places on the periodic table that has metalloids... I hope this helps
Answer:
6.25 grams is the mass of solute dissolved.
Explanation:
w/w % : The percentage mass or fraction of mass of the of solute present in total mass of the solution.

Mass of the solution = 50.0 g
Mass of the solvent = x
w/w % = 12.5%

x = 6.25 g
6.25 grams is the mass of solute dissolved.
Answer: 24 moles of
are produced.
Explanation:
To calculate the moles :

According to stoichiometry :
1 mole of
is accompanied with = 1 mole of 
Thus 24 moles of
is accompanied with =
of 
Thus 24 moles of
are produced.
Answer:
Basically it would be 8.5g. Not total sure.
Explanation:
If its right plz give brainlest.