Answer:K subscript e q equals StartFraction StartBracket upper C upper O subscript 2 EndBracket StartBracket upper C a upper O EndBracket over StartBracket upper C a upper C upper O subscript 3 EndBracket EndFraction
Explanation: the answer has it's root in Law of mass action which states that; the rate of a chemical reaction is directly proportional to the product of the concentrations of the reactants raised to their respective stoichiometric coefficients.
Sodium(Na) is the limiting reagent.
<h3>What is Limiting reagent?</h3>
The reactant that is totally consumed during a reaction, or the limiting reagent, decides when the process comes to an end. The precise quantity of reactant required to react with another element may be estimated from the reaction stoichiometry.
How do you identify a limiting reagent?
The limiting reactant is the one that is consumed first and sets a limit on the quantity of product(s) that can be produced. Calculate how many moles of each reactant are present and contrast this ratio with the mole ratio of the reactants in the balanced chemical equation to get the limiting reactant.
Start by writing the balanced chemical equation that describes this reaction
![2Na_{(s)} + Cl_{2 (g)} -- > 2NaCl_{(s)}](https://tex.z-dn.net/?f=2Na_%7B%28s%29%7D%20%2B%20Cl_%7B2%20%28g%29%7D%20--%20%3E%202NaCl_%7B%28s%29%7D)
Notice that the reaction consumes 2 moles of sodium metal for every 1 mole of chlorine gas that takes part in the reaction and produces 2 moles of sodium chloride.
now we can see that we have 3 moles of sodium and 3 moles of chlorine, according to question. so, we can say that sodium is the limiting reagent in the given situation.
to learn more about Limiting Reagent go to - brainly.com/question/14222359
#SPJ4
Decomposition is a chemical reaction that breaks the reactant into two or more products. Moles of nitrogen gas
in the cylinder is 1.63 moles.
<h3>What is the ideal gas equation?</h3>
The ideal gas equation states the relation of the hypothetical ideal gas according to the pressure, volume, temperature and moles of the gas. It is given by,
![\rm PV = nRT](https://tex.z-dn.net/?f=%5Crm%20PV%20%3D%20nRT)
Where,
Pressure (P) = 2000 kPa
Volume (V) = 2L
Temperature (T) = 295 K
Gas constant (R)= 0.08206
Substituting values in the equation:
![\begin{aligned} \rm n &= \rm \dfrac{PV}{RT}\\\\&= \dfrac{2000 \times (\dfrac{1}{101.325}) \times 2}{0.08206 \times 295}\\\\&= 1.63\;\rm mol\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5Crm%20n%20%26%3D%20%5Crm%20%5Cdfrac%7BPV%7D%7BRT%7D%5C%5C%5C%5C%26%3D%20%5Cdfrac%7B2000%20%5Ctimes%20%28%5Cdfrac%7B1%7D%7B101.325%7D%29%20%5Ctimes%202%7D%7B0.08206%20%5Ctimes%20295%7D%5C%5C%5C%5C%26%3D%201.63%5C%3B%5Crm%20mol%5Cend%7Baligned%7D)
Therefore, 1.63 moles are produced.
Learn more about ideal gas equation here:
brainly.com/question/26720901
Answer:
La masa de óxido de carbono iv formado es 44 g.
Explanation:
En esta pregunta, se nos pide calcular la masa de óxido de carbono iv formado a partir de la reacción de masas dadas de carbono y oxígeno.
En primer lugar, necesitamos escribir una ecuación química equilibrada.
C + O2 → CO2
De la ecuación, 1 mol de carbono reaccionó con 1 mol de oxígeno para dar 1 mol de óxido de carbono iv.
Ahora, si marca las masas en la pregunta, verá que corresponde a la masa atómica y la masa molar de la molécula de carbono y oxígeno, respectivamente. ¿Qué indica esto?
Como tenemos una relación molar de 1: 1 en todo momento, lo que esto significa es que la masa de óxido de carbono iv producida también es la misma que la masa molar de óxido de carbono iv.
Por lo tanto, procedemos a calcular la masa molar de óxido de carbono iv Esto es igual a 12 + 2 (16) = 12 + 32 = 44 g Por lo tanto, la masa de óxido de carbono iv formado es 44 g
Answer:
Two electrons fit in the first shell out from the nucleus and eight fit in the second. Every element with more protons than the two of Helium needs to work on shells outside the first one. one you get to ten, you have filled the first two shells.
In a water molecule, oxygen forms one covalent bond with EACH of TWO hydrogen atoms. As a result, the oxygen atom has a stable arrangement of 8 valence electrons. Each hydrogen atom forms only one bond because it needs only two electrons to be stable.