The answer is
A,B,C
all cells come from cells.
All living things are made up of cells.
A cell is the smallest unit of life.
Answer: The number of grams of
in 1620 mL is 1.44 g
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 1620 ml = 1.62 L (1L=1000ml)
n = number of moles = ?
R = gas constant =
T =temperature =


Mass of hydrogen =
The number of grams of
in 1620 mL is 1.44 g
Salt + water
Example :
acid base salt water
↓ ↓ ↓ ↓
HCl <span> + NaOH = NaCl + H</span>₂<span>O
</span>Hydrochloric Acid + Sodium Hydroxide = Sodium Chloride + Water
hope this helps!
Answer:
Part A:
Charge is 
Configuration is 
Part B:
Charge is 
Configuration is 
Part C:
Charge is 
Configuration is 
Explanation:
Monatomic ions:
These ions consist of only one atom. If they have more than one atom then they are poly atomic ions.
Examples of Mono Atomic ions: 
Part A:
For P:
Phosphorous (P) has 15 electrons so it require 3 more electrons to stabilize itself.
Charge is 
Full ground-state electron configuration of the mono atomic ion:

Part B:
For Mg:
Magnesium (Mg) has 12 electrons so it requires 2 electrons to lose to achieve stable configuration.
Charge is 
Full ground-state electron configuration of the mono atomic ion:

Part C:
For Se:
Selenium (Se) has 34 electrons and requires two electrons to be stable.
Charge is 
Full ground-state electron configuration of the mono atomic ion:

i. The dissolution of PbSO₄ in water entails its ionizing into its constituent ions:

---
ii. Given the dissolution of some substance
,
the Ksp, or the solubility product constant, of the preceding equation takes the general form
.
The concentrations of pure solids (like substance A) and liquids are excluded from the equilibrium expression.
So, given our dissociation equation in question i., our Ksp expression would be written as:
.
---
iii. Presumably, what we're being asked for here is the <em>molar </em>solubility of PbSO4 (at the standard 25 °C, as Ksp is temperature dependent). We have all the information needed to calculate the molar solubility. Since the Ksp tells us the ratio of equilibrium concentrations of PbSO4 in solution, we can consider either [Pb2+] or [SO4^2-] as equivalent to our molar solubility (since the concentration of either ion is the extent to which solid PbSO4 will dissociate or dissolve in water).
We know that Ksp = [Pb2+][SO4^2-], and we are given the value of the Ksp of for PbSO4 as 1.3 × 10⁻⁸. Since the molar ratio between the two ions are the same, we can use an equivalent variable to represent both:

So, the molar solubility of PbSO4 is 1.1 × 10⁻⁴ mol/L. The answer is given to two significant figures since the Ksp is given to two significant figures.