Answer:
How to Save the Rainforest
Teach others about the importance of theenvironment and how they can help save rainforests.
Restore damaged ecosystems by planting trees on land where forests have been cut down.
Encourage people to live in a way that doesn't hurt the environment.
Establish parks to protect rainforests and wildlife.
Answer:
The correct answer is - e. many different molecules form a signaling cascade.
Explanation:
Signal transduction is the number of events that take place inside the body of a human from the external atmosphere to transmitting a chemical or physical signal through a number of molecular events of signaling cascade.
The transmission of the particular chemical or physical signal is caused a sequence of phosphorylation events inside the cell it involves specific protein receptors and different types of molecules.
Answer:After the energy from the sun is converted and packaged into ATP and NADPH, the cell has the fuel needed to build food in the form of carbohydrate molecules. The carbohydrate molecules made will have a backbone of carbon atoms. Where does the carbon come from? The carbon atoms used to build carbohydrate molecules comes from carbon dioxide, the gas that animals exhale with each breath. The Calvin cycle is the term used for the reactions of photosynthesis that use the energy stored by the light-dependent reactions to form glucose and other carbohydrate molecules.
Explanation:The Interworkings of the Calvin Cycle
In plants, carbon dioxide (CO2) enters the chloroplast through the stomata and diffuses into the stroma of the chloroplast—the site of the Calvin cycle reactions where sugar is synthesized. The reactions are named after the scientist who discovered them, and reference the fact that the reactions function as a cycle. Others call it the Calvin-Benson cycle to include the name of another scientist involved in its discovery (Figure 5.14).
This illustration shows that ATP and NADPH produced in the light reactions are used in the Calvin cycle to make sugar.
Answer:
it causes the depolarization of the target cell
Explanation:
Glutamate is an excitatory amino acid neurotransmitter that binds to specific receptors on the surface of target cells and thus causes its depolarization. During glutamate-mediated depolarization, the difference in charge inside and outside the cell is lost due to the entry of sodium and calcium positive ions into the postsynaptic cell (neuron) through specific ion channels. Moreover, glutamate binding also leads to the exit of potassium ions from the cell, thereby resulting in excitation. Through this mechanism, glutamate regulates many signaling pathways, such as those involved in memory, learning, emotions, cognition, motor control, etc.