Answer:
a. The probability that a customer purchase none of these items is 0.49
b. The probability that a customer purchase exactly 1 of these items would be of 0.28
Step-by-step explanation:
a. In order to calculate the probability that a customer purchase none of these items we would have to make the following:
let A represents suit
B represents shirt
C represents tie
P(A) = 0.22
P(B) = 0.30
P(C) = 0.28
P(A∩B) = 0.11
P(C∩B) = 0.10
P(A∩C) = 0.14
P(A∩B∩C) = 0.06
Therefore, the probability that a customer purchase none of these items we would have to calculate the following:
1 - P(A∪B∪C)
P(A∪B∪C) =P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C)
= 0.22+0.28+0.30-0.11-0.10-0.14+0.06
= 0.51
Hence, 1 - P(A∪B∪C) = 1-0.51 = 0.49
The probability that a customer purchase none of these items is 0.49
b.To calculate the probability that a customer purchase exactly 1 of these items we would have to make the following calculation:
= P(A∪B∪C) - ( P(A∩B) +P(C∩B) +P(A∩C) - 2 P(A ∩ B ∩ C))
=0.51 -0.23 = 0.28
The probability that a customer purchase exactly 1 of these items would be of 0.28
Answer:
a. 9.5x + 6.5(x+c) < 8 when c>0
b. Must be one child more than the no. of adults.
Step-by-step explanation:
For Cinema 1:
for adult = $9.50
for child = $6.50
For Cinema 2:
Per person regardless of age = $8.00
First of all, we will find out the condition when per person rates in both cinema are equal.
Assume x = no. of adults
y = no. of children
Rate per person in Cinema I = Rate per person in Cinema II
(9.5x + 6.5y)/(x+y) = 8
9.5x + 6.5y = 8(x+y)
9.5x + 6.5y = 8x + 8y
9.5x-8x = 8y-6.5y
=> x = y
So rates are equal when no. of adults equals no. of children
For Cinema I to have better rates, no. of children should be atleast 1 more than the no. of adult. In this way the rate per person of Cinema I will be less than 8
Hence we form an inequality when y = x+c and c > 0
9.5x + 6.5(x+c) < 8 when c>0
Hence there must be 1 more children than the no. of adults attending Cinema I for it to be a better deal.
<span>Exactly 8*pi - 16
Approximately 9.132741229
For this problem, we need to subtract the area of the square from the area of the circle. In order to get the area of the circle, we need to calculate its radius, which will be half of its diameter. And the diameter will be the length of the diagonal for the square. And since the area of the square is 16, that means that each side has a length of 4. And the Pythagorean theorem will allow us to easily calculate the diagonal. So:
sqrt(4^2 + 4^2) = sqrt(16 + 16) = sqrt(32) = 4*sqrt(2)
Therefore the radius of the circle is 2*sqrt(2).
And the area of the circle is pi*r^2 = pi*(2*sqrt(2)) = pi*8
So the area of the rest areas is exactly 8*pi - 16, or approximately 9.132741229</span>
Answer:
Neither
Step-by-step explanation:
Answer:
The cost of the 1 muffin is $1.5 and 1 quart of milk cost is $3 .
Step-by-step explanation:
Let us assume that the cost of one muffins be x.
Let us assume that the cost of one 1 quarts of milk be y.
As given
The cost of 8 muffins and 2 quarts of mil is $18.
Than the equation becomes
8x + 2y = 18
As given
The cost of 3 muffins and 1 quart of milk is $7.50.
Than the equation becomes
3x + 1y = 7.50
Two equations are
8x + 2y = 18 and 3x + 1y = 7.50
Multiply 3x + 1y = 7.50 by 2 and subtracted from 8x + 2y = 18 .
Thus
8x - 6x + 2y - 2y = 18 - 15
2x = 3

x = 1.5
Put x = 1.5 in 3x + 1y = 7.50
3 × 1.5 + y = 7.50
y = 7.50 - 4.5
y = 3
Therefore the cost of the 1 muffin is $1.5 and 1 quart of milk cost is $3 .