3/4 of an hour = 45 minutes
45 * 3 = 135 minutes
135 + 45 = 180 minutes
He spends 180 minutes or 3 hours
Answer:
• David
,
• 4 miles
Explanation:
In the graph:
The given locations are:
• Owen's House, A(11,3)
,
• David's House, B(15,13)
,
• School, C(3,18)
We determine both Owen's and David's distance from the school using the distance formula.

Owen's distance from school (AC)
![\begin{gathered} AC=\sqrt[]{(3-11)^2+(18-3)^2} \\ =\sqrt[]{(-8)^2+(15)^2} \\ =\sqrt[]{64+225} \\ =\sqrt[]{289} \\ AC=17\text{ miles} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20AC%3D%5Csqrt%5B%5D%7B%283-11%29%5E2%2B%2818-3%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B%28-8%29%5E2%2B%2815%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B64%2B225%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B289%7D%20%5C%5C%20AC%3D17%5Ctext%7B%20miles%7D%20%5Cend%7Bgathered%7D)
David's distance from school (BC)
![\begin{gathered} BC=\sqrt[]{(3-15)^2+(18-13)^2} \\ =\sqrt[]{(-12)^2+(5)^2} \\ =\sqrt[]{144+25} \\ =\sqrt[]{169} \\ BC=13\text{ miles} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20BC%3D%5Csqrt%5B%5D%7B%283-15%29%5E2%2B%2818-13%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B%28-12%29%5E2%2B%285%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B144%2B25%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B169%7D%20%5C%5C%20BC%3D13%5Ctext%7B%20miles%7D%20%5Cend%7Bgathered%7D)
We see from the calculations that David lives closer to the school, and by 4 miles.
The graph below is attached for further understanding:
Answer:
see the explanation
Step-by-step explanation:
we have
<em>Felicia</em>

Apply distributive property


Combine like terms

Let
a ----> the missing term with coefficient x in Gregory's expression
b ----> the missing constant term in Gregory's expression
so

equate Gregory's expression to Felicia's expression

so
----->
------> 
so
Gregory's expression is

therefore
The missing terms are 2 and -x
we know that
The simple interest formula is equal to

where
A is the Final Investment Value
P is the Principal amount of money to be invested
r is the rate of interest
t is Number of Time Periods
in this problem we have

substitute in the formula above


Round to the nearest dollar
therefore
<u>the answer is the option D</u>