a. Given that y = f(x) and f(0) = -2, by the fundamental theorem of calculus we have

Evaluate the integral to solve for y :



Use the other known value, f(2) = 18, to solve for k :

Then the curve C has equation

b. Any tangent to the curve C at a point (a, f(a)) has slope equal to the derivative of y at that point:

The slope of the given tangent line
is 1. Solve for a :

so we know there exists a tangent to C with slope 1. When x = -1/3, we have y = f(-1/3) = -67/27; when x = -1, we have y = f(-1) = -3. This means the tangent line must meet C at either (-1/3, -67/27) or (-1, -3).
Decide which of these points is correct:

So, the point of contact between the tangent line and C is (-1, -3).
<h2>
Hello!</h2>
The answer is:
The second option,
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
<h2>
Why?</h2>
Discarding each given option in order to find the correct one, we have:
<h2>
First option,</h2>
![\sqrt[m]{x}\sqrt[m]{y}=\sqrt[2m]{xy}](https://tex.z-dn.net/?f=%5Csqrt%5Bm%5D%7Bx%7D%5Csqrt%5Bm%5D%7By%7D%3D%5Csqrt%5B2m%5D%7Bxy%7D)
The statement is false, the correct form of the statement (according to the property of roots) is:
![\sqrt[m]{x}\sqrt[m]{y}=\sqrt[m]{xy}](https://tex.z-dn.net/?f=%5Csqrt%5Bm%5D%7Bx%7D%5Csqrt%5Bm%5D%7By%7D%3D%5Csqrt%5Bm%5D%7Bxy%7D)
<h2>
Second option,</h2>
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
The statement is true, we can prove it by using the following properties of exponents:

![\sqrt[n]{x^{m} }=x^{\frac{m}{n} }](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5E%7Bm%7D%20%7D%3Dx%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%20%7D)
We are given the expression:
![(\sqrt[m]{x^{a} } )^{b}](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D)
So, applying the properties, we have:
![(\sqrt[m]{x^{a} } )^{b}=(x^{\frac{a}{m}})^{b}=x^{\frac{ab}{m}}\\\\x^{\frac{ab}{m}}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%28x%5E%7B%5Cfrac%7Ba%7D%7Bm%7D%7D%29%5E%7Bb%7D%3Dx%5E%7B%5Cfrac%7Bab%7D%7Bm%7D%7D%5C%5C%5C%5Cx%5E%7B%5Cfrac%7Bab%7D%7Bm%7D%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
Hence,
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
<h2>
Third option,</h2>
![a\sqrt[n]{x}+b\sqrt[n]{x}=ab\sqrt[n]{x}](https://tex.z-dn.net/?f=a%5Csqrt%5Bn%5D%7Bx%7D%2Bb%5Csqrt%5Bn%5D%7Bx%7D%3Dab%5Csqrt%5Bn%5D%7Bx%7D)
The statement is false, the correct form of the statement (according to the property of roots) is:
![a\sqrt[n]{x}+b\sqrt[n]{x}=(a+b)\sqrt[n]{x}](https://tex.z-dn.net/?f=a%5Csqrt%5Bn%5D%7Bx%7D%2Bb%5Csqrt%5Bn%5D%7Bx%7D%3D%28a%2Bb%29%5Csqrt%5Bn%5D%7Bx%7D)
<h2>
Fourth option,</h2>
![\frac{\sqrt[m]{x} }{\sqrt[m]{y}}=m\sqrt{xy}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5Bm%5D%7Bx%7D%20%7D%7B%5Csqrt%5Bm%5D%7By%7D%7D%3Dm%5Csqrt%7Bxy%7D)
The statement is false, the correct form of the statement (according to the property of roots) is:
![\frac{\sqrt[m]{x} }{\sqrt[m]{y}}=\sqrt[m]{\frac{x}{y} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5Bm%5D%7Bx%7D%20%7D%7B%5Csqrt%5Bm%5D%7By%7D%7D%3D%5Csqrt%5Bm%5D%7B%5Cfrac%7Bx%7D%7By%7D%20%7D)
Hence, the answer is, the statement that is true is the second statement:
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
Have a nice day!
Rounding to the nearest thousand
for example, if the number is 104001. ten thousand would be 100000 while rounding to the nearest thousand would be 104000. accurate means closer to the correct answer, and the one rounded to the nearest thousand, 104000 is closer to the correct answer 104001 than the one rounded to ten thousand
Answer:
x=5 and y=-2
Step-by-step explanation:
3x+5y=5
-(7x+5y=25)
-4x=-20
x=5
plug 5 into one of the equations. 3(5)+5y=5
y= -2