Answer:
Superficie de un prisma rectangular fórmula
Área de un prisma rectangular = 2la + 2ah + 2lh.
Step-by-step explanation:
Answer:
The given points are

The setting would have a interval or 2 units above and below the minimum and maximum of each coordinate.
The given maxium horizontal coordinate is 0.
The given minimum horizontal coordinate is -13.
The given maximum vertical coordinate is 3.
The given minimum vertical coordinate is -7.
Now, we extend each maximum and minimum value by 2 units to create the setting.
So, the setting is

With a scale of 2 units.
Answer:
24 oz has the lowest cost per ounce.
Step-by-step explanation:
12 oz ---> $2.49
1 oz --> $2.49/12
1 oz --> $0.2075
14 oz --> $3.15
1 oz --> $3.15/14
1 oz --> $0.225
20 oz --> $5
1 oz --> $5/20
1 oz --> $0.25
24 oz --> $4.56
1 oz --> $4.56/24
1 oz --> $0.19 ..........this is the lowest cost per ounce
36 oz --> $7.2
1 oz --> $7.2/36
1 oz --> $0.2
Answer:
2
Step-by-step explanation:
The x-coordinate of point (2, 9) is 2.
The distance from 0 to 2 on a number line is 2.
Answer: 2
Since sin(2x)=2sinxcosx, we can plug that in to get sin(4x)=2sin(2x)cos(2x)=2*2sinxcosxcos(2x)=4sinxcosxcos(2x). Since cos(2x) = cos^2x-sin^2x, we plug that in. In addition, cos4x=cos^2(2x)-sin^2(2x). Next, since cos^2x=(1+cos(2x))/2 and sin^2x= (1-cos(2x))/2, we plug those in to end up with 4sinxcosxcos(2x)-((1+cos(2x))/2-(1-cos(2x))/2)
=4sinxcosxcos(2x)-(2cos(2x)/2)=4sinxcosxcos(2x)-cos(2x)
=cos(2x)*(4sinxcosx-1). Since sinxcosx=sin(2x), we plug that back in to end up with cos(2x)*(4sin(2x)-1)