1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mice21 [21]
3 years ago
7

Which could be the missing reason in Step 3?

Mathematics
2 answers:
svet-max [94.6K]3 years ago
6 0

Answer:

Alternative interior angles are congruent

Step-by-step explanation:

guapka [62]3 years ago
4 0

Answer:

the answer is a

Step-by-step explanation:

alternate interior angles are congruent

You might be interested in
Find the lateral surface area of the triangular prism.
Aleks [24]

Answer:

is it A?

Step-by-step explanation:

I think it's A because no one has answered!

3 0
3 years ago
Plsss someone help me pls!!! PART B: identify congruent angles
Westkost [7]

Answer:

∠R=∠C

∠U=∠A

∠G=∠R

∴∠RUG=∠CAR

6 0
3 years ago
Solve these recurrence relations together with the initial conditions given. a) an= an−1+6an−2 for n ≥ 2, a0= 3, a1= 6 b) an= 7a
8_murik_8 [283]

Answer:

  • a) 3/5·((-2)^n + 4·3^n)
  • b) 3·2^n - 5^n
  • c) 3·2^n + 4^n
  • d) 4 - 3 n
  • e) 2 + 3·(-1)^n
  • f) (-3)^n·(3 - 2n)
  • g) ((-2 - √19)^n·(-6 + √19) + (-2 + √19)^n·(6 + √19))/√19

Step-by-step explanation:

These homogeneous recurrence relations of degree 2 have one of two solutions. Problems a, b, c, e, g have one solution; problems d and f have a slightly different solution. The solution method is similar, up to a point.

If there is a solution of the form a[n]=r^n, then it will satisfy ...

  r^n=c_1\cdot r^{n-1}+c_2\cdot r^{n-2}

Rearranging and dividing by r^{n-2}, we get the quadratic ...

  r^2-c_1r-c_2=0

The quadratic formula tells us values of r that satisfy this are ...

  r=\dfrac{c_1\pm\sqrt{c_1^2+4c_2}}{2}

We can call these values of r by the names r₁ and r₂.

Then, for some coefficients p and q, the solution to the recurrence relation is ...

  a[n]=pr_1^n+qr_2^n

We can find p and q by solving the initial condition equations:

\left[\begin{array}{cc}1&1\\r_1&r_2\end{array}\right] \left[\begin{array}{c}p\\q\end{array}\right] =\left[\begin{array}{c}a[0]\\a[1]\end{array}\right]

These have the solution ...

p=\dfrac{a[0]r_2-a[1]}{r_2-r_1}\\\\q=\dfrac{a[1]-a[0]r_1}{r_2-r_1}

_____

Using these formulas on the first recurrence relation, we get ...

a)

c_1=1,\ c_2=6,\ a[0]=3,\ a[1]=6\\\\r_1=\dfrac{1+\sqrt{1^2+4\cdot 6}}{2}=3,\ r_2=\dfrac{1-\sqrt{1^2+4\cdot 6}}{2}=-2\\\\p=\dfrac{3(-2)-6}{-5}=\dfrac{12}{5},\ q=\dfrac{6-3(3)}{-5}=\dfrac{3}{5}\\\\a[n]=\dfrac{3}{5}(-2)^n+\dfrac{12}{5}3^n

__

The rest of (b), (c), (e), (g) are solved in exactly the same way. A spreadsheet or graphing calculator can ease the process of finding the roots and coefficients for the given recurrence constants. (It's a matter of plugging in the numbers and doing the arithmetic.)

_____

For problems (d) and (f), the quadratic has one root with multiplicity 2. So, the formulas for p and q don't work and we must do something different. The generic solution in this case is ...

  a[n]=(p+qn)r^n

The initial condition equations are now ...

\left[\begin{array}{cc}1&0\\r&r\end{array}\right] \left[\begin{array}{c}p\\q\end{array}\right] =\left[\begin{array}{c}a[0]\\a[1]\end{array}\right]

and the solutions for p and q are ...

p=a[0]\\\\q=\dfrac{a[1]-a[0]r}{r}

__

Using these formulas on problem (d), we get ...

d)

c_1=2,\ c_2=-1,\ a[0]=4,\ a[1]=1\\\\r=\dfrac{2+\sqrt{2^2+4(-1)}}{2}=1\\\\p=4,\ q=\dfrac{1-4(1)}{1}=-3\\\\a[n]=4-3n

__

And for problem (f), we get ...

f)

c_1=-6,\ c_2=-9,\ a[0]=3,\ a[1]=-3\\\\r=\dfrac{-6+\sqrt{6^2+4(-9)}}{2}=-3\\\\p=3,\ q=\dfrac{-3-3(-3)}{-3}=-2\\\\a[n]=(3-2n)(-3)^n

_____

<em>Comment on problem g</em>

Yes, the bases of the exponential terms are conjugate irrational numbers. When the terms are evaluated, they do resolve to rational numbers.

6 0
3 years ago
Gillian eats 12 skittles. If there was originally 25 skittles in the bag, what percent of the skittles did Gillian eat? (NOT A S
Maslowich

you divide 12 by 25 which is 0.48 and multiply it by 48 and the answer is 48%


4 0
3 years ago
Quiz: QZ 3.1-3.2
hram777 [196]

Answer:

<em><u>F</u></em><em><u>i</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>f</u></em><em><u>o</u></em><em><u>l</u></em><em><u>l</u></em><em><u>o</u></em><em><u>w</u></em><em><u>i</u></em><em><u>n</u></em><em><u>g</u></em><em><u> </u></em><em><u>f</u></em><em><u>o</u></em><em><u>r</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>f</u></em><em><u>u</u></em><em><u>n</u></em><em><u>c</u></em><em><u>t</u></em><em><u>i</u></em><em><u>o</u></em><em><u>n</u></em><em><u> </u></em><em><u>4</u></em><em><u>\</u></em><em><u>l</u></em><em><u> </u></em><em><u>=</u></em><em><u>5</u></em><em><u> </u></em><em><u>n</u></em><em><u>e</u></em><em><u>v</u></em><em><u>e</u></em><em><u>r</u></em><em><u> </u></em><em><u>f</u></em><em><u>i</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>i</u></em><em><u>t</u></em><em><u> </u></em><em><u>A</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>l</u></em><em><u>i</u></em><em><u>k</u></em><em><u>e</u></em><em><u> </u></em><em><u>h</u></em><em><u>e</u></em><em><u>a</u></em><em><u>r</u></em><em><u>t</u></em><em><u> </u></em><em><u>f</u></em><em><u>o</u></em><em><u>l</u></em><em><u>l</u></em><em><u>o</u></em><em><u>w</u></em><em><u> </u></em><em><u>m</u></em><em><u>e</u></em><em><u> </u></em><em><u>B</u></em><em><u>y</u></em><em><u>e</u></em><em><u> </u></em><em><u>h</u></em><em><u>o</u></em><em><u>p</u></em><em><u>e</u></em><em><u> </u></em><em><u>a</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>h</u></em><em><u>e</u></em><em><u>l</u></em><em><u>p</u></em><em><u>s</u></em><em><u> </u></em><em><u>O</u></em><em><u>m</u></em><em><u>g</u></em><em><u> </u></em><em><u>i</u></em><em><u> </u></em><em><u>s</u></em><em><u>e</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>m</u></em><em><u>y</u></em><em><u> </u></em><em><u>h</u></em><em><u>o</u></em><em><u>u</u></em><em><u>s</u></em><em><u>e</u></em><em><u> </u></em><em><u>h</u></em><em><u>e</u></em><em><u>l</u></em><em><u>p</u></em><em><u> </u></em><em><u>m</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>s</u></em><em><u> </u></em><em><u>Z</u></em><em><u>o</u></em><em><u>m</u></em><em><u>b</u></em><em><u>i</u></em><em><u>e</u></em><em><u> </u></em><em><u>N</u></em><em><u>o</u></em><em><u>o</u></em><em><u>o</u></em><em><u>o</u></em><em><u /></em><em><u /></em>

4 0
3 years ago
Other questions:
  • 750 split in to the ratio 7:8
    14·1 answer
  • Is 2x + 8 = 2(x + 4) a infinite solution
    10·2 answers
  • Write an equation of a line that passes through the point (1,2) and is parallel to the line y=-5x+4
    7·1 answer
  • PLEASEEWW HELPPP WILL MARK BRAINLIESTTT
    13·2 answers
  • I’m so confused. Can someone please help?
    13·1 answer
  • What is the equation in point-slope form of the line passing through (0, 5) and (−2, 11)? y − 5 = −3(x + 2) y − 5 = 3(x + 2) y −
    14·1 answer
  • Suppose U1 and U2 are i.i.d. Unif(0,1) withU1=0.1 and U2=0.8. Use the "cosine" version of Box-Muller to generate a single Nor(-1
    11·1 answer
  • 2. Find the base of a triangle which has an area of 2 1/4 square inches, and a height of 1/8 in. ​
    15·1 answer
  • 11. A company plans to have coffee mugs produced with the company logo on them. The cost of each
    12·1 answer
  • The area of the triangle below is 38.28 square meters. What is the length of the base?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!