Answer:
0.6856
Step-by-step explanation:
![\text{The missing part of the question states that we should Note: that N(108,20) model to } \\ \\ \text{ } \text{approximate the distribution of weekly complaints).]}](https://tex.z-dn.net/?f=%5Ctext%7BThe%20missing%20part%20of%20the%20question%20states%20that%20we%20should%20Note%3A%20that%20%20N%28108%2C20%29%20model%20to%20%7D%20%5C%5C%20%5C%5C%20%20%5Ctext%7B%20%7D%20%5Ctext%7Bapproximate%20the%20distribution%20of%20weekly%20complaints%29.%5D%7D)
Now; assuming X = no of complaints received in a week
Required:
To find P(77 < X < 120)
Using a Gaussian Normal Distribution (
108,
= 20)
Using Z scores:

As a result X = 77 for N(108,20) is approximately equal to to Z = -1.75 for N(0,1)
SO;

Here; X = 77 for a N(108,20) is same to Z = 0.6 for N(0,1)
Now, to determine:
P(-1.75 < Z < 0.6) = P(Z < 0.6) - P( Z < - 1.75)
From the standard normal Z-table:
P(-1.75 < Z < 0.6) = 0.7257 - 0.0401
P(-1.75 < Z < 0.6) = 0.6856
9514 1404 393
Answer:
3
Step-by-step explanation:
The square root function (√) only gives positive values, so graphs 1 and 4 make no sense.
When x = -3, the y-value is 0, consistent with graph 3.
It will take 13 weeks to save the money to buy the equipment because if you subtract 20 you get 55.25 then divide by 4.25 you get 13 <span />