The function (fg)(x) is a composite function
The value of the function (fg)(x) is 2x^3 + 7x^2 - 19x - 20
<h3>How to determine the function (fg)(x)?</h3>
The functions are given as:
f(x) = 2x^2 - 3x - 4 and g(x) = x + 5.
To calculate (fg)(x), we make use of
(fg)(x) = f(x) * g(x)
So, we have:
(fg)(x) = (2x^2 - 3x - 4) * (x + 5)
Expand
(fg)(x) = 2x^3 - 3x^2 - 4x + 10x^2 - 15x - 20
Collect like terms
(fg)(x) = 2x^3 - 3x^2 + 10x^2 - 4x - 15x - 20
Evaluate
(fg)(x) = 2x^3 + 7x^2 - 19x - 20
Hence, the function (fg)(x) is 2x^3 + 7x^2 - 19x - 20
Read more about composite function at:
brainly.com/question/10687170
Answer:
General Equation of a Line

Step-by-step explanation:
Find the slope first and then place the values on the general formula. The final step is to solve for y
The amount of shampoo required by Morgan each week to bathe her dog = 2 oz
So
The amount of shampoo required by Morgan in 7 days to bathe her dog = 2 oz
The amount of shampoo remaining after 4 weeks = 34 oz
So the amount of shampoo remaining after (4 * 7) days = 34 oz
The amount of shampoo remaining after 28 days = 34 oz
The amount of shampoo that Morgan uses in 28 days = (2/7) * 28 oz
= 2 * 4 oz
= 8 oz
Then
8 oz of shampoo is required by Morgan in = 28 days
Then
34 oz of shampoo will be used in = (28/8) * 34 days
= 7 * 17 days
= 119 days
So
The total number of
days before the bottle becomes empty = 119 + 8 oz
= 127 days