Above question is incomplete. Complete question is attached below
........................................................................................................................
Solution:
Reduction potential of metal ions are provided below. Higher the value to reduction potential, greater is the tendency of metal to remain in reduced state.
In present case,
reduction potential of Au is maximum, hence it is least prone to undergo oxidation. Hence, it is
least reactive.
On other hand,
reduction potential of Na is minimum, hence it is most prone to undergo oxidation. Hence, it is
most reactive.
1mol—44g/mol
0.10mol—x
x=0.10*44
x=4.4 g
All the information is answered/given in the paragraph except that the study doesn’t show cells in their natural habitat!
Answer : The molecular formula of the compound will be, 
Explanation :
Empirical formula : It is the simplest form of the chemical formula which depicts the whole number of atoms of each element present in the compound.
Molecular formula : it is the chemical formula which depicts the actual number of atoms of each element present in the compound.
For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.
The equation used to calculate the valency is :

As we are given that the empirical formula of a compound is
and the molar mass of compound is, 90.09 gram/mol.
The empirical mass of
= 1(12) + 2(1) + 1(16) = 30 g/eq


Molecular formula = 
Thus, the molecular formula of the compound will be, 
When mass Ti = density * volume
and when moles Ti = mass Ti/molar mass Ti
∴ Volume = 2.86 x 10^23 atom * ( 1 mol Ti / 6.022 x 10^23) * (47.867 g Ti / 1 mol Ti) *(1Cm3 / 4.5 g Ti )
= 5.05 Cm^3
when we assume that the sample of Ti is a cube:
and we assume the length = X
∴ V = X^3
∴X^3 = 5.05
∴X = ∛5.05
= 1.7 Cm