Answer:
0.2M NaOh
Explanation:
there are 0.2 mol of NaOH in 8.0 g. (8.0/40) =0.2. Molarity = mol/L = 0.2M.
Answer: Chemical X H3 and f1
Explanation:
Answer:
A = B < D < C
C - S
Cl - Cl
F ← H
Si → O
Explanation:
The polarity of a bond increases with the increase in the difference in electronegativity. The dipole moment is represented with an arrow pointing the more electronegative atom.
A: carbon-sulfur
C - S
ΔEN = |EN(C) - EN(S)| = |2.5 - 2.5| = 0
B: chlorine - chlorine
Cl - Cl
ΔEN = |EN(Cl) - EN(Cl)| = |3.0 - 3.0| = 0
C: fluorine – hydrogen
F ← H
ΔEN = |EN(F) - EN(H)| = |4.0 - 2.1| = 1.9
D: silicon - oxygen
Si → O
ΔEN = |EN(Si) - EN(O)| = |1.8 - 3.5| = 1.7
The order of increasing polarity is A = B < D < C.
Answer:
1) acetylide
2) enol
3) aldehydes
4) tautomers
5) alkynes
6) Hydroboration
7) Keto
8) methyl ketones
Explanation:
Acetylide anions (R-C≡C^-) is a strong nucleophile. Being a strong nucleophile, we can use it to open up an epoxide ring by SN2 mechanism. The attack of the acetylide ion occurs from the backside of the epoxide ring. It must attack at the less substituted side of the epoxide.
Oxomercuration of alkynes and hydroboration of alkynes are similar reactions in that they both yield carbonyl compounds that often exhibit keto-enol tautomerism.
The equilibrium position may lie towards the Keto form of the compound. Usually, if terminal alkynes are used, the product of the reaction is a methyl ketone.
As the air molecules move through the valve they have friction as they hit the walls, and its this friction that causes it to heat up.