For the given situation above, I'm afraid I cannot answer your question since a pedigree chart isn't provided along with the question. You can resubmit your question together with the chart and we'll analyze it. Thank you for posting though. Here is what pedigree analysis is about.
Scientists have devised an approach, called pedigree analysis<span>, to study the inheritance of genes in humans. Pedigree analysis is also useful when studying any population when progeny data from several generations is limited. Pedigree analysis is also useful when studying species with a long generation time.</span>
They both share the same function
Answer:
Mitosis
Explanation:
Meiosis is the splitting of sex cells which happens during reproduction. Mitosis is the splitting of body cells in order to make more body cells. Mitosis is how your body grows, therefore it occurs more frequently because the body is not constantly reproducing.
There will be mass migration of animals from Location B because of habitat loss.
Answer:
a transgenic copy of the gene C is sufficient to restore normal eye development
Explanation:
In genetics, there are diverse approaches to determining a gene's function. For example, it is possible to use a complementation test to determine loss-of-function recessive mutations when it is unknown if such mutations fall in the same or in different genes. Similarly to the generation of loss-of-function phenotypes, it is possible to insert a gene and thus produce a gain-of-function mutation that restores normal gene function (i.e., to restore the wild phenotype). Moreover, transgenic organisms refer to genetic engineering techniques by which any foreign or modified gene is inserted in the genome of an organism, which can also be used to study gene function. In this case, the restoration of the normal phenotype (wild-type eyes) is associated with the expression of the transgenic gene C, thereby evidencing that the gene C is required for normal eye development. In the last years, transgenic models have shed light on developmental pathways and on gene function.