Answer:
2.00 M
Explanation:
The concentration of a solution is given by

where
m is the mass of solute
V is the volume of the solution
At the beginning, the solution has:
M = 6.00 M is the concentration
V = 100 mL = 0.1 L is the volume
So the mass of solute (HCl) is

Then, the HCL is diluted into a solution with volume of
V = 300 mL = 0.3 L
Therefore, the final concentration is:

Answer:
1.70
Explanation:
The molar mass of perchloric acid is 100.46 g/mol. The moles corresponding to 484 mg (0.484 g) are:
0.484 g × (1 mol/100.46 g) = 4.82 × 10⁻³ mol
4.82 × 10⁻³ moles are dissolved in 240 mL (0.240 L) of solution. The molar concentration of perchloric acid is:
4.82 × 10⁻³ mol/0.240 L = 0.0201 M
Perchloric acid is a strong monoprotic acid, that is, it dissociates completely, so [H⁺] = 0.0201 M.
The pH is:
pH = -log [H⁺] = -log 0.0201 = 1.70
Answer: The final temperature is 
Explanation:

As we know that,

.................(1)
where,
q = heat absorbed or released
= mass of lead = 50 g
= mass of water = 75 g
= final temperature = ?
= temperature of lead = 
= temperature of water = 
= specific heat of lead = 
= specific heat of water= 
Now put all the given values in equation (1), we get
![50\times 0.11\times (T_{final}-373)=-[75\times 1.0\times (T_{final}-273)]](https://tex.z-dn.net/?f=50%5Ctimes%200.11%5Ctimes%20%28T_%7Bfinal%7D-373%29%3D-%5B75%5Ctimes%201.0%5Ctimes%20%28T_%7Bfinal%7D-273%29%5D)

Therefore, the final temperature of the mixture will be 279.8 K.